2011. december 5., hétfő

ABV-fegyverek: Atomfegyverek





Kifejlesztésének előzményei – A német atombomba
Már jóval az amerikaiak előtt Hitler "Harmadik Birodalma" rendelkezett az atombomba előállításának tudományos és technikai hátterével. Az atombomba teljes kifejlesztését az összeroppanó náci Németország hiúsította meg. De ne rohanjunk ennyire előre! Nézzük meg, hogy milyen előzményei voltak a német atomfegyver programnak!
1938-ban óriási port kavart és egyből lázba hozta a világ tudósait két német fizikus, Otto Hahn ésFritz Strassmann felfedezése, miszerint az instabil uránatom, külső behatásra, két részre szakad, miközben hatalmas (egy vonatrakomány szén energiájának megfelelő) energia szabadul fel. Ez volt a maghasadás felfedezésének éve.
Egy évvel később, 1939-ben a Nature című brit tudományos folyóiratban megjelent három fizikus,Frédéric Joliot-CurieHans Halban és Lew Kowarski "Neutronok kiszabadulása uránatommag robbanásakor" című cikke, amelyben leírták a láncreakció folyamatát, miszerint ha az uránatommag hasadásakor két vagy több neutron keletkezik, amelyek kölcsönhatásba lépve más uránatommagokkal azokat ismét hasadásra készteti és ez így megy míg el nem fogy az összes uránatommag.
Még ugyanebben az évben, alig egy hónappal a cikk megjelenését követően a német hadügyminisztériumba levél érkezett a hamburgi egyetem előadóitól. Jelezték, hogy lehetőségük van olyan robbanóanyag előállítására, amelynek pusztító ereje sokszorosa a hagyományos robbanóanyagénak. Természetesen nem is kellett ennél több, az éppen világuralmi terveit szövögető náci vezetésnek. Létrehozták a német "Urán Társaságot" ("Uranverein"), míg a koordinációs tudományos központ a berlini "Vilmos Császár Fizikai Intézet" (Kaiser-Wilhelm-Institut für Physik") lett. Ennek az intézetnek 1933-ig Albert Einstein volt a rektora, de zsidó származása miatt menekülnie kellett Németországból. Helyét Werner Heisenberg vette át, aki megkapta a hamburgi, a lipcsei és a heidelbergi egyetem legjobb atomfizikusait.
A tudósgárda készen állt, az ipari háttér is rendelkezésre állt (Tekintve, hogy Németország akkoriban óriási összegeket, a nemzeti össztermék több, mint 70%-át fordította hadipari fejlesztésekre és a német hadsereg felfegyverzésére, a legkorszerűbb, legprecízebb gépek álltak rendelkezésükre.), már csak az alapanyagok hiányoztak. Ahhoz, hogy atombombát lehessen kifejleszteni, vagy egyáltalán bármit, ami az atomkutatással kapcsolatos el lehessen kezdeni, két fontos összetevőre volt szükségük: uránium ércre és deutérium-oxidra, azaz nehézvízre. Előbbi érthető, hogy miért kell, utóbbit a gyorsan mozgó neutronok lassítására használják az atomerőművekben, ugyanis csak a viszonylag lassan mozgó neutronok képesek láncreakciót elindítani.
Deutérium-oxid
A deutériumot 1931-ben fedezte fel Harold Urey. A deutérium a hidrogén egy stabil izotópja, amely annyiban tér el a közönséges hidrogén atomtól, hogy ebben az atommagban a proton mellett egy semleges töltésű, de nehéz részecskének számító neutron is megtalálható.
A nehézvíz (deutérium-oxid, D2O vagy 2H2O) tulajdonságai nagyon hasonlítanak a közönséges víz (H2O) tulajdonságaihoz. A különbség abból adódik, hogy a nehézvíz esetében mindkét hidrogénatom a deutériumra van cserélve. Emiatt megváltozik a kötési energia a vízmolekulában, maga után vonva - a vízéhez képest - egyes fizikai és kémiai tulajdonságainak megváltozását.


Németország viszonylag hamar szerzett uránkészletet a megszállt Csehszlovákiából, viszont a nehézvízre egészen 1940. áprilisáig várniuk kellett a tudósoknak, ugyanis ekkor szállták meg Norvégiát, ahol nehézvizet állítottak elő.




















Most már minden meg volt ahhoz, hogy a német atomfizikusok nekiállhassanak az atommagokat kutatni, kísérletezni. A német tudósok először egy mini-atomerőművet hoztak létre, amelyben grafitszabályozók gondoskodtak a kontrolált láncreakcióról, és kisebb urángömböket helyeztek el a nehézvízzel töltött tartályba.
A német tudósok azonban kicsúsztak az időből. A fegyver nem készült el, bár pár éve Rainer Karlsch azt írta egy könyvében, hogy Németország rendelkezett atombombával, sőt! Nem csak rendelkezett, de ki is próbálta, igaz ekkor már igencsak késő volt. A német csodafegyver már nem tudta megváltoztatni a háború menetét. Hogy miért nem tudtak időben elkészülni? Nos, erről ahány cikkíró foglalkozott ezzel, annyiféle okot találtam. Egyesek azt mondják, hogy belső feszültségek gyengítették a kutatócsoport munkáját, mások azt állítják, hogy maga Heisenberg hátráltatta a kutatásokat, megint mások az SS tisztekre kenik a sarat, mások a pénz- és időhiányról beszélnek, de olvastam arról is, hogy a német tudósok egyetlen dolgot nem tudtak csak megállapítani, ez pedig a kritikus tömeg.
Kritikus tömeg
Az a mennyiség, amely felett a láncreakció önmagától elindul. Ez az uránium-235 esetében 56kg.
Utóbbi állítás szerint, a híres német precizitás itt ütött vissza, ugyanis a tudósok által atombombának nevezett szerkezet, inkább volt alkalmas atomerőműnek, semmint atombombának. Akárhogy is volt, az amerikaiak beelőzték a németeket, és ezzel egy csapásra megváltoztatták a világot.
Kifejlesztésének előzményei – A Manhattan-terv
Rengeteg magyar vonatkozása van a Manhattan-terv néven ismertté vált amerikai atomprojektnek, így nem lehet kihagyni természetesen ezt a vonalat sem.
1934-ben Szilárd Leó szabadalmat nyújtott be a British Admiralitynek, amelyben az energiatárolás egy lehetséges módjáról ír, majd 1936-ban egy újabb szabadalmat jegyeztetett be, amely egy bomba elvét írta le. Utóbbinak valóban csak az elvét alkotta meg, ugyanis ötlete sem volt, hogy milyen anyagot használjon, hogy a legjobb eredményt érhesse el. 1935-ben Teller Ede is emigrált az USA-ba.
1939-ben Szilárd Leó, Albert Einstein aláírásával levelet küldött az akkori amerikai elnöknek, Franklin D. Roosevelt-nek, amelyben felhívta figyelmét a német atomprogramra, és egy esetleges német atombomba lehetőségéről tájékoztatta. Tulajdonképpen ekkor indult meg a Manhattan-terv, amelynek keretén belül az atomkutatás és az atombomba kifejlesztése állt. Hatalmas erőkkel indult meg a kutatás, több titkos kutatóállomást is létrehoztak ekkoriban (Los Alamos, Oak Ridge, Hanford). Az eredmények sem maradtak el. 1940-ben, alig egy évvel a terv beindítását követően felfedezték a plutóniumot, majd 1941-ben felfedezték, hogy a plutónium-239 izotóp alkalmasabb alapanyag bombagyártásra, mint az addig tesztelt uránium-235-ös, a nagyobb hatáskeresztmetszete miatt.
Hatáskeresztmetszet
Definíció szerint a hatáskeresztmetszet az a felület, amelyet az ütköző részecskék (atomok, molekulák, ill. egyéb részecskefizikai entitások) egymásnak célfelületként nyújtanak. Jele: σ; mértékegysége: m2, ill. atomfizikában barn. 1 barn=10-28 m2.
Az események főleg a Pearl Harbor-t ért japán támadás után (1941. december 7.) kezdtek el felpörögni.
1942. december 2-án, Chicagóban üzembe helyezték az első kísérleti atomreaktort. Ennek fűtőanyaga még nem a ma használatos 235-ös uránizotóp volt, hanem fémurán, melynek rengeteg hátrányos tulajdonsága is volt. Pl.: magas hőmérsékleten deformálódott, összetöredezett.
Azonban ez a sikeres kísérlet, valamint a japán támadás hozzájárult ahhoz, hogy teljes gőzre kapcsolják a Manhattan-tervet. Ekkor került be a projektbe Teller Ede is, aki később a hidrogénbombát fejleszti ki.
Kevesen tudják, de a Manhattan-tervben Neumann János is aktívan részt vett, állítólag, megbetegedését is a tüdejébe jutott radioaktív por okozta.
1942-ben azonban még úgy tűnt a tudósoknak, hogy nagyon messze vannak egy esetleges atombomba megalkotásától, hiszen alig 2 éve fedezték fel a plutóniumot, és nincs 1 éve se, hogy rájöttek, melyik izotóp alkalmas egyáltalán bombagyártásra, eközben hiába dolgoztak ki több módszert is az urándúsításra (elektromágneses, centrifugás és gázdiffúziós szétválasztás), alig volt alapanyaguk. Az atomfizikusok még mindig a plutónium adatait mérték, miközben egyre inkább sürgetett az idő, hiszen nem tudhatták, hogy az óceán túlsó felén, a náci Németország tudósai mennyire haladnak a kutatásokkal. Azonban bármilyen meglepő is, hiába volt kevés dúsított uránjuk a tudósoknak, már ejtési és robbantási kísérleteket végeztek bombamodelleken.
Mivel később az atombombatípusainál részletesebben is kitérek az implóziós technikára, ezért csak a lényeget írnám le, ami a történeti előzményeket illeti.
Neumann János korábban már dolgozott a hadseregnek, mikor is a haditengerészet felkérésére különböző alakú lövedékek által keltett lökéshullámok bonyolult hidrodinamikájával foglalkozott. Így hát érthető volt, hogy felkeltette érdeklődését az S. Neddermeyer által kidolgozott implóziós technika. Neumann, számítógépe segítségével elvégezte a modellezést, amelyből kiderült, hogy az implóziós technikával kisebb, könnyebb, de hatásosabb atomfegyver állítható elő.
Ezenkívül Neumann rengeteg segítséget nyújtott mind a matematikusoknak, mind a fizikusoknak és a hadseregnek egyaránt. Például bevonták a megtámandó japán célpontok kiválasztásába is, neki kellett elvégeznie a szükséges számításokat.
A Manhattan-terv keretén belül Hanford-ban három vízhűtéses óriásreaktort helyeztek üzembe, amelyeket Wigner Jenő tervezett. 1944. decemberében beindult a nagyüzemi urán és plutónium gyártás, majd 1945. július 16-án sikeres kísérleti robbantást hajtottak végre Alamogordo (Új-Mexikó) közelében egy implóziós elven működő atombombával, amelynek hatóereje 20 000 tonna TNT (trotil) hatóerejével ért fel. Ez volt a Trinity névre keresztelt atombomba. Kevesebb, mint egy hónappal később pedig már Nagaszaki és Hirosima is a földdel lett egyenlővé egy-egy atombomba ledobását követően.Kifejlesztésének előzményei – A szovjet atombombák
A szovjet atombomba program azután indult, miután 
Flerov 1942-ben figyelmeztette Sztálint a bomba lehetőségére. A program vezetője Kurcsatov volt, akinek szobra a róla elnevezett moszkvai intézet bejáratánál ma is látható. Az amerikai bombák bevetése után a programot felgyorsították. 1946. december 25.-én működésbe lép a szovjetek kísérleti atomerőműve. 1949. augusztus 29-én robbantják fel az első 120 kilotonnás atombombát Szemipalatyinszk mellett. Az már egy másik, érdekes történet, hogy hogyan, miként tett szert a sztálini Szovjetunió ilyen hamar atombombára. Valószínűsíthető, hogy a II. világháború végeztével foglyul ejtett német tudósok járultak hozzá az eredményekhez, de az ún. atomkémek ténykedése is segíthette az egyébként erőteljes lemaradásban szenvedő szovjeteket.
1953-ban már az első hidrogénbombát is tesztelték a szovjetek, melynek neve RDSz–6 (Reaktivnyi Dvigatel Sztalina) volt.
1961. október 30-án a Szovjetunió felrobbantotta a valaha épített és felrobbantott legnagyobb atombombát az ún. Cár-bombát (RDSZ-37), Novaja Zemlján. Elképesztő 57 megatonnás hatóerejű volt a bomba, és eredetileg kétszer ilyen erősre, 100 megatonnásra tervezték, de végül ezt elvetették, hiszen ekkora tömegnél, már hatalmas a radioaktív anyag kiszóródása, azaz a robbanásban részt nem vevő, passzív radioaktív anyag jelenléte. Mint minden, amit a Szovjetunióban állítottak elő, gigantikus volt ez a bomba is. Nem csak hatóereje volt óriási, hanem puszta megjelenése is. A bomba 27 tonnát nyomott, 8m hosszú és 2m átmérőjű volt. Azonban ez nem volt több puszta erődemonstrációnál. Mérete és súlya miatt erősen korlátozva volt a bevethetősége, a szállítógépet speciálisan át kellett alakítani, hogy elbírja ezt a terhet, rengeteg üzemanyagot igényelt a célba juttatása, éppen ezekmiatt a ballisztikus vagy interkontinentális rakétákra történő felhelyezése is teljesen értelmetlen lett volna. Azonban egy dologra tökéletes volt: a tudósok rájöttek, hogy ekkora atombombát értelmetlen építeni, így egyre inkább a méret csökkentése, a mobilizálhatóság és a hatásfok növelése lettek a főszempontok egy-egy bomba tervezésénél.

ABV-fegyverek: Atomfegyverek II. rész

Működésük
Történeti áttekintésünk után nézzük meg, hogy miként is működik az atombomba! Milyen folyamatok játszódnak le egy-egy atombomba belsejében?
Maghasadás
























A maghasadás (fisszió) olyan nagy sebességű, s nagy energia felszabadulással járó magfizikai reakció, melynek során egyes nehéz radioaktív atommagok (spontán, vagy külső hatásra) kisebb tömegű atommagokká alakulnak át. A reakció során gamma-, valamint neutronsugárzás, és hatalmas hőenergia keletkezik. Az atomfegyverek alapjául szolgáló nagy sebességű mesterséges magátalakulás (a láncreakció) két alapvető feltétele: nagy energiájú szabad neutronok és kritikus tömegű radioaktív anyag.
Láncreakció
A láncreakció tulajdonképpen a maghasadásból következik. Nem másról van szó, mint egymás után gyorsan (a másodperc tört része alatt) bekövetkező maghasadásokról, mikor is az egyik maghasadásból keletkező neutronok újabb nehéz atommagokat találnak el, hasítanak szét, amelyek újabb neutronokat generálnak, amelyek újabb atommagokat hasítanak szét, és ez egészen addig megy, míg el nem fogy az összes hasadóanyag, legalábbis elméletben. A gyakorlat azt mutatja, hogy egy heves (pl.: az atombombában lejátszódó)  láncreakció a hasadóanyagot a teljes lebomlás előtt szétveti.

Magfúzió































A másik lehetőség hatalmas energiák felszabadítására a magfúzió, vagy magegyesülés, melynek során könnyű atommagokat, nagy külső-energia befektetéssel egyesülésre kényszerítünk, miközben ismét hatalmas energia szabadul fel. Ennek oka, hogy az egyesült elemek  össztömege kisebb a kiindulási anyagokénál, s a tömeghiánnyal egyenértékű energia válik szabaddá. Ez az elve a hidrogénbombának, ahol is egy atombomba segítségével indítják be a reakciót.
Az atombomba típusai
Fissziós bombák vagy egyfázisú atombombák
Ezek a bombák a maghasadást használják a pusztításhoz. Két alapvetően eltérő működési elvet alkalmaznak/alkalmaztak az atombombák építésekor. Az egyik a már fentebb említett 
implóziós (berobbantás) technika. Ezt elsősorban a plutónium bombáknál használják. Lényege, hogy a hasadóanyag körül kémiai robbanószert helyeznek el. Mikor beindítják a robbantási folyamatot tulajdonképpen a kémiai robbanószert robbantják be, amely összepréseli a benne elhelyezett hasadóanyagot, így az nagyobb sűrűségű lesz, elérve a kritikus tömegét, amelyben megindul a láncreakció. A Nagaszakira ledobott plutónium bomba ezen az elven működött.

A másik működési elv, az ún. 
puska-elv, amit gyakrabban használnak és főleg az uránbombákra jellemző. Lényege, hogy a hasadóanyagot 2 részre osztják, amelyek külön-külön nem érik el a kritikus tömeget, de egy robbantás után a két darab egyesül, kritikus tömegűvé vállnak és megindul a láncreakció. Ilyen elven működött a Hirosimára ledobott Little Boy atombomba is.
Fúziós fegyverek
Ezek közös tulajdonsága, hogy a tiszta fissziót, vagyis az atombombát arra használják, hogy a magfúzió folyamatát beindítsák, mintegy külső energiaforrásként veszik igénybe ezeket. Ilyen a hidrogénbomba is, amelynek működési elvéről fentebb már volt szó, de ismétlés a tudás anyja, ezért álljon itt ismételten: A hidrogénbomba felrobbanása során hidrogénatomokat, (deutérium vagy trícium hidrogén izotópokat) arra kényszerítenek nagy energiájú atombomba felrobbantásával, hogy egyesüljenek, és hélium atomok keletkezzenek. Azonban a hélium atomok össztömege kisebb, mint a hidrogén izotópoké, így a tömegkülönbözet energia formájában felszabadul és kisugárzódik.
Egyéb megnevezések: termonukleáris atomfegyver, kétfázisú atombomba, Teller-Ulam (Teller Ede és Stanislaw Ulam neve után)

Az első amerikai hidrogénbombát 
1952. november 1-én (más források szerint október 31-én) a csendes-óceáni Enewetak atollon robbantották fel. Az Ivy Mike nevű kétfázisú atombomba 82 tonnát nyomott, így hatalmas súlya miatt nem volt bevethető. A hagyományos fissziós bomba felrobbanása cseppfolyós deutérium fúzióját indította be. A robbanás 10,4 megatonnás volt, 2km átmérőjű, 50m mély vízalatti krátert hagyott hátra. A robbantás után elképesztő, 80Mt talajhiány mutatkozott, lényegében egy teljes sziget eltűnt (bal oldali kép).

Az első – immár bevethető méretű - amerikai hidrogénbombát
1954. február 28-án robbantották fel a Bikini Atol nevű szigetcsoporton, a bomba neve Castle Bravo volt. A fúziós fokozat lítium-deuteridből készült. 15 megatonnás hatóerőt produkált, azonban ez 2,5-szerese volt a laboratóriumban kiszámított értéknek, és ennek bizony súlyos következményei lettek. A megnövekedett hatásfok miatt több szigetlakó is sugárbetegséget, és égési sérüléseket szenvedett, többen meghaltak. A kísérletben részt vevő szakemberek és katonai megfigyelők is a számított sugárdózisnál jóval nagyobb mennyiséget kaptak, közülük többeket is a sugárbetegség tüneteivel kellett kezelni.

Fejlesztett hasadásbombák
Az egyszerű fissziós bombák hihetetlenül rossz hatásfokkal rendelkeztek kezdetekben. A Hirosimára ledobott Little Boy esetén a láncreakció az urántöltet mindössze 1%-ára korlátozódott, mégis hatalmas pusztítást vitt véghez. Míg a Nagaszakira ledobott Fat Man plutónium bomba esetén is csak 10% körüli volt a láncreakcióban részt vett hasadóanyag mennyisége. A fejlesztett hasadóanyag bombák egyaránt használják a fúziós és fissziós energiát, azonban a fúziót neutrontermelésre használják, amely így hozzájárul a tisztább és nagyobb hatásfokú fisszió lezajládásához. Az első ilyen bomba a 
Greenhouse Item volt, melyet 1951. május 24-én robbantottak fel. A bomba belsejében deutérium-trícium gáz volt, amellyel sikerült megduplázni a bomba erejét és hatásfokát.
Háromfázisú atombomba
Működési elve a következő: először egy kis energiájú fissziót indítanak be, az ott keletkező energia és neutronlöket beindítja a 2. fázist, amely egy fúzió. Az itt keletkező még nagyobb energia, és még több neutron egy rendkívül nagyenergiájú, és nagytisztaságú (90% feletti a láncreakcióban résztvevő hasadóanyag mennyisége) fissziót indít be. Ezek a fegyverek okozzák a legnagyobb pusztítást.
Neutronbomba
Hivatalos megfogalmazásban 
megnövelt sugárzású nukleáris fegyver. Egy kétfázisú atombombáról van szó, azonban a keletkező neutronokat nem fogják fel a bomba külső köpenyében, hanem hagyják kiszóródni a szabadba. A neutronbombák legnagyobb előnye, hogy viszonylag kis energia felszabadítás mellett, rengeteg neutront és gammasugárzást szabadít fel. Ezzel az élő szervezeteket elpusztítja a harcmezőn, azonban a gépek és berendezések érintetlenül maradnak, amiket a támadó fél akár már a bombatámadást követő másnap fel is használhat, védőfelszerelésben persze. Kifejlesztésére a hidegháborúban került sor az USA-ban, tartva egy esetleges szovjet szárazföldi támadástól. A szovjetek ugyanis elsősorban az élő erőre, és a szárazföldi egységekre helyezték a főbb hangúlyt.
Kobaltbomba
Csak elméletben létező bomba, amelyet Szilárd Leó vetett fel. A bomba külső köpenye kobaltból készülne, amely erős neutron besugárzást követően kobalt-60 izotóppá alakul át, amelynek 5,27 év a felezési ideje, így tartósan lakhatatlanná tenné a megtámadott területet. Szilárd szerint pár ilyen kobalt bomba az egész Földet lakhatatlanná tenné. Angolul gyakran „Doomsday engine”, azaz „Végítélet-gép” néven szokták emlegetni.
Piszkos bomba vagy radiológiai fegyver
Klasszikus értelemben nem atombomba, hiszen sem fúzió, sem fisszó nem játszódik le benne, azonban mégis ide szokták ezeket a fegyvereket is sorolni. Egy hagyományos kémiai bombából és valamilyen radioaktív izotópból áll. A robbanást követően a rendkívül sugárzó anyag szétszóródik, és sugárbetegséget okoz.

A fenti működési mechanizmus szerinti csoportosítás mellett a robbanáskor felszabaduló energia alapján is szoktak csoportosítani. Így megkülönböztetnek 
harcászati vagy taktikai atomfegyvereket, ezek 0.3Kt-tól pár száz Kt-ig terjedőek. Ezeket elsősorban a harcmezőn, az ellenséges erők lokális megsemmisítésére vethetik be.






































M65 - atomágyú
Fajtái:
  • tüzérségi lövedékek,
  • tengeralattjárók elleni mélységi bombák,
  • gravitációs légibombák,
  • harcászati rakéták,
  • atomaknák.
A 10 Kt-tól, 100Mt-ig terjedő széles skálába a hadászati, vagy stratégiai nukleáris fegyverek tartoznak. Ezek célpontjaik nem az ellenséges erők, hanem az ellenség háttérországának városai. Gyakran interkontinentális ballisztikus rakétákra vagy robotrepülőgépekre szerelik ezeket, így megnövelve a hatótávolságukat.

ABV-fegyverek: Atomfegyverek III. rész

Az atombomba pusztító hatásai
  • a hő- és fénysugárzás,
  • a lökő-szívó hatás (detonáció), vagyis a légköri hullám,
  • az áthatoló (kezdeti) radioaktív sugárzás,
  • az elektromágneses impulzus,
  • a visszamaradó radioaktív sugárzás
Az egyes pusztító tényezők százalékos megoszlása az összesen felszabaduló pusztító energiához képest a hatóerőtől, a robbantási módtól és az atomfegyver típusától függ (vagyis egy-, két-, vagy három-fázisú, illetve irányított hatású vagy sem).
Egy közepes hatóerejű (10 kt - 100 kt közötti) légi atomrobbantás energia megoszlása a következő:
Pusztító tényező
E (%)
hő- és fénysugárzás:
35
léglökési hullám:
50
áthatoló radioaktív sugárzás:
5
elektromágneses impulzus:
1
visszamaradó radioaktív sugárzás:
9
 
Hő és fényimpulzus
Az atomrobbanás hő és fénysugárzása a robbanás centrumából kilépő és a tér minden irányában fénysebességgel terjedő elektromágneses energia, amely kb. 99 %-ban látható fény, illetve infravörös (hő) sugárzásból, 1 %-ban ibolyántúli sugárzásból áll.
A hő és fénysugárzás forrása a tűzgömb, így ennek a pusztító tényezőnek a közvetlen hatásával a tűzgömb élettartama (az ún. világítási idő) alatt kell számolnunk, ami kis és közepes hatóerők esetén néhány másodperc, nagy hatóerőknél néhány perc.
A fény és hőenergia valamely objektum, tárgy felületével történő találkozásakor részben, vagy teljesen elnyelődik, visszaverődik, illetve ha az anyag fényáteresztő áthatol rajta. Az elnyelődött energia hatására az anyagok felhevülnek, deformálódnak, megolvadnak, lángra lobbannak, vagy elszenesednek, nagy kiterjedésű harctéri tüzek keletkeznek, az élőerőnél különböző súlyosságú égési sérülések, ideiglenes vagy végleges vakság lép fel.
Az égési sérülések foka - több más tényező mellett - a bőrfelületen elnyelődött fényimpulzus nagyságától függ.
A fedetlen testrészeken égési sérülést okoz:
Energia
Sérülés foka
10-20 J/cm2 energia könnyű
I. fokú (bőrpír)
20-40 J/cm2 energia középsúlyos
II. fokú (erős hólyagképződés)
40-80 J/cm2 energia már súlyos
III. fokú (a bőrfelszín teljes elhalás)
80 J/cm2 feletti energia igen súlyos
IV. fokú (a bőr és a szövetek elszenesedése)
Nyári és téli ruházattal borított bőrfelületen a fenti értékek másfélszerese - háromszorosa okoz I-IV fokú égési sérülést.
Kezdeti áthatoló sugárzás
Az áthatoló radioaktív sugárzás - más kifejezéssel kezdeti radioaktív sugárzás - az atomrobbanás centrumából a robbanás pillanatától a tűzgömb élettartama alatt kilépő, a tér minden irányában fénysebességgel terjedő gamma és neutronsugárzás.
A gamma és a neutronsugarak igen nagy áthatoló képességgel rendelkeznek, káros biológiai elváltozásokat, sugárbetegséget okoznak az élő szervezetben, emellett pusztító hatást fejtenek ki bizonyos anyagokra, például a félvezető alapú áramköri elemekre, az optikai eszközök üveganyagára stb.
Az áthatoló sugárzáson belül a gamma és a neutronsugárzás egymáshoz viszonyított aránya a hatóerő, a robbantási mód és az atomfegyver típusa függvényében széles határok között változik, a nem irányított hatású, közepes hatóerejű atomfegyver esetén a gamma, míg a mikró hatóerejű szelektív atomfegyvereknél (neutronfegyvereknél) a neutronsugárzás a meghatározó.
Lökőhullám
A léglökési hullám a robbanás középpontjából a tér minden irányába, kezdetben a hangsebességnél nagyobb sebességgel terjedő összenyomott levegőfront, amelyet számszerűen a levegőfront sebességével és túlnyomásával jellemzünk. A léglökési hullám a földi és az alacsony légi atomrobbantások legfőbb pusztító tényezője.
















A személyi állomány és a harci-technikai eszközök, objektumok sérülése, pusztulása, rongálódása egyrészt közvetlenül, a léglökési hullám frontjában uralkodó túlnyomás, másrészt közvetve, a léglökési hullám által nagy sebességgel szétrepített szilánkok, omladékok, roncsok hatására következik be. Ez utóbbi, úgynevezett repítő hatás a túlnyomás által veszélyeztetett zónákhoz képest lényegesen nagyobb körzetekben képes sérüléseket, halált, rongálódást okozni.
Különösen nagy pusztítást okoz az alacsony légi robbantásoknál a földfelszínre beeső és az onnan visszaverődő hullámok találkozásából létrejövő, a felszínre merőleges nagynyomású és nagysebességű levegőfal, az úgynevezett ütőhullám.
A robbanás irányába eső emelkedőkön - a lejtőszög függvényében - a túlnyomás a sík terephez képest akár háromszorosára is nőhet, az ellentétes lejtőkön, völgyekben viszont jelentősen csökken.
Az atomrobbantásoknál (de minden robbantásnál) megfigyelhető egy ún. szívóhatás. A detonációt követő megnövekedett légnyomás után, a kihűlő gázok, felfelé emelkednek, amelyek egy erőteljes szívóhatást fejtenek ki, ami – atomrobbantások esetén – ismét jelentős anyagi károkat tud okozni. Jól demonstrálja a léglökés erejét az alábbi videó.

Elektromágneses impulzus (EMI)
Az atomrobbanásokat minden esetben igen erős elektromágneses impulzusok kísérik, amelyek hatása leginkább a villámcsapások körzetében fellépő elektromos-elektromágneses jelenségekhez hasonlítható.
A robbanás centrumából a tér minden irányában kisugárzó elektromos energia a különböző híradóeszközökben; lokátorokban, antennákban, vezetékekben, a föld vagy légkábelekben több ezer voltos indukált feszültséget hoz létre, amely tönkreteheti a vezetékek szigeteléseit, a híradó eszközök transzformátorait, kondenzátorait, félvezető alkatrészeit, reléit stb. A felhevült alkatrészek éghető részei – pl. a tokozások, szigetelések - lángra lobbanhatnak, s tüzet okozhatnak.
Visszamaradó radioaktív sugárzás (fallout)


























Az atomrobbanások sajátos kísérő jelensége és egyben pusztító tényezője a környezet radioaktív szennyeződése, amelyet más kifejezéssel visszamaradó radioaktív sugárzásnak nevezünk. A visszamaradó radioaktív sugárzás három fő forrásból, a láncreakció során keletkező hasadvány-termékekből, a hasadó anyagnak a láncreakcióban részt nem vett hányadából, valamint a neutronsugárzás által kiváltott, ún. indukált radioaktivitásból származik.
A légkör és a terep szennyeződésének mértéke több tényezőtől, így az atomfegyver típusától, az atomfegyver, hatóerejétől, robbantási módjától, a terep jellegétől és a meteorológiai viszonyoktól függ.
A legnagyobb visszamaradó radioaktív szennyeződés a földalatti és a földi atomrobbantásnál keletkezik: azonos hatóerő, atomfegyvertípus, terep és meteorológiai viszonyok feltételezése esetén.
Az atomrobbanási felhőből kihullott, illetve a robbanás körzetében a felaktiválódásból származó radioaktív termékek alfa, béta, gamma és neutron sugárzása a személyi állománynál különböző fokú sugárbetegséget, s ezáltal ideiglenes vagy végleges harcképtelenséget, illetve halált okoznak.
Különösen súlyos biológiai elváltozásokkal jár, amikor a radioaktív anyagok közvetlenül a fedetlen bőrfelületre jutnak, vagy élelmiszerekkel, vízzel, a belélegzett levegővel a szervezetbe kerülnek.
Robbantási fajták
A robbanás magasságának függvényében megkülönböztetünk légköri, földfelszíni, földalatti és magas légköri robbanásokat.
A magas légköri robbanás 30 km fölötti. A levegő ritkasága miatt a röntgensugaraknak sokkal nagyobb a hatótávolságuk (több száz km), így a keletkezett tűzgömb is nagyobb. A légkör nagymértékű ionizálása telekommunikációs rendszerek (műholdak, repülőgépek) összeomlását idézi elő. Az elektromágneses impulzus tönkreteheti a kifinomult elektronikai eszközöket. Bevetésük valószínűtlen a nagy hatótávolságuk miatt: egy ilyen bomba egy egész kontinens kommunikációs rendszerét is megbéníthatja. 1962. július 9-én végrehajtották az első magas légköri kísérleti atomrobbantást, amely a Starfish Prime nevet viselte.

A légköri robbanás magassága kevesebb, mint 30 km, viszont elég magas ahhoz, hogy a tűzgömb ne érje el a Föld felszínét. A magasság változtatásával maximalizálhatjuk a légnyomási, hősugárzási vagy a radioaktív hatást. Gyalogság ellen ez a legmegfelelőbb bevetési mód, mivel nagy területen (több négyzetkilométer) égési sérüléseket okoz, és még nagyobb területen okoz szemsérülést. A radioaktív kihullás ez esetben nem a robbanás közelében ér földet.
A földfelszíni robbanás esetében a keletkezett tűzgömb hozzáér a földhöz, így a felszabadult energia egy részét a föld nyeli el. Hatása kisebb, mint a légköri robbanás esetében. A radioaktív kihullás itt jelentős.
Az ionizáló sugárzás és a testszövet kölcsönhatása
Az ionizáló sugárzások biológiai hatásai bonyolult folyamatok eredményeként jönnek létre. A testszövet anyaga és a sugárzás között először fizikai kölcsönhatások lépnek fel, amelyeket kémiai, biokémiai elváltozások követnek. Ezek következményeként biológiai elváltozások alakulnak ki.
Az észlelhető biológiai elváltozások általában bizonyos lappangási idő elteltével jelentkeznek.
A szervezet sugárérzékenyebb részei a nyirokszövetek és a csontvelő. A csontvelő nagy érzékenysége miatt bizonyos izotópok már kis mennyiségű inkorporálódása (pl 90Sr) is veszélyes azok csontokban való lerakódása és a gátolt kiürülése miatt.
A vérkép már kis dózisú besugárzás hatására is megváltozik (ezért ellenőrző orvosi vizsgálatok fontos része).
A vérerek tágulnak, a hajszálerek fala áteresztővé válik, ez belső vérzéseket okozhat. A bélfalak károsodása miatt egyes tápanyagok a tápcsatornából nem szívódnak fel, nem kívánatos anyagok (pl. fajidegen fehérje) pedig a falon átjutnak. Az ivarszervek is sugárérzékenyek, a sugárzás hatására az ivarsejtek termelése csökken, illetve meg is szűnhet nagy dózisok elszenvedésének hatására. Érzékeny látószervünk, a szem lencséjének károsodása már viszonylag kis dózisok hatására bekövetkezhet.
Az ionizáló sugárzás hatására a bőrön bőrpír (a bőr átmeneti gyulladásos reakciója), pigmentáció, heveny, vagy idült bőrgyulladás, melynek későbbi következményeként a bőr sorvadása, burjánzása, értágulatok, fekélyesedés, bőrrák alakulhatnak ki.
A felsorolt biológiai károsodások együttese a sugárbetegség. A sugárbetegség lefolyása és súlyossága függ attól, hogy mekkora az elszenvedett dózis, illetve a test melyik részét érte. A szervezet sugárérzékenysége egyébként egyénenként és időben is változhat.
A genetikai károsodás során az ivarsejtek magjainak - átöröklő tulajdonságokat hordozó – kromoszómáinak károsodása révén mutációk alakulnak ki.
Az egyes elszenvedett sugáradagok:
1-2,5
 Gray (100-250 rad) sugáradag első fokú sugárbetegség. A betegség tünetei jelentéktelenek. A kezdeti reakció 2-3 hét után jelentkezik, a tünetek közé tartozik a fokozott izzadás, szédülés, enyhe fulladás, a torokban szárazságérzet és fáradság. A vérkép megváltozik. 2,5 Gy (250 rad) esetén a besugárzottak 85 % - a elveszti a harcképességét, ebből kb. 50 % az első nap folyamán. A betegek a harcképesség elvesztése után 1,5 - 2 hónapig kórházi kezelésre szorulnak.
2,5-4 Gray (250-400 rad) sugáradag, másodfokú sugárbetegség. A besugárzás után 2 órával jelentkezik a kezdődő reakció, ami 1-3 napig tart. (Fejfájás, émelygés, hányinger, általános gyengeség, szomjúság, szédülés, szárazság és forróságérzet a szájban.) Ezután a tünetek átmenetileg megszűnnek és a beteg 2-3 hétig jól érzi magát. Az orvosi vizsgálat azonban szívműködési, vérkeringési zavarokat és vérképi elváltozásokat mutat ki. A 3-6 hét folyamán a betegség kifejlődik. Ennek tünetei: étvágytalanság, hasmenés, vérzések, hajhullás, erős vérképelváltozások. Intenzív kezelés mellett 2-2,5 hónap alatt a betegek általában meggyógyulnak, de pihenésre szorulnak. A 3 Gy (300 rad) sugáradagot elszenvedett személyek elvesztik harcképességüket. (Ebből 85 % még az első nap folyamán). Az ilyen sugáradaggal besugárzott katonákat feltétlenül kórházba kell szállítani. A késlekedés a betegség súlyosbodásához vezethet.
4-6 Gray (400-600 rad) sugáradag, harmadfokú sugárbetegség. A kezdeti reakció a besugárzás utáni első órában hevesen jelentkezik. (Állandó hányinger). 2-3 nap múlva lappangási időszak következik, amely 1-3 hétig tart. Ezután általános gyengeség, étvágytalanság lép fel, gyors kifáradás és fulladás a legkisebb fizikai igénybevételre. Időnként hasmenés is jelentkezik. A vérkép erősen megváltozik. A betegség kifejlődésének időszakában erős fejfájás, magas láz, álmosság, szomjúság, étvágytalanság, rossz közérzet, hányás, hasmenés, vérzések, hajhullás, alacsony vérnyomás, szapora, de gyenge pulzus és erőteljes vérképváltozások lépnek fel.
A betegek feltétlenül kórházi kezelésre szorulnak. Az időben megkezdett intenzív gyógyítással meg lehet előzni az elhalálozást. A gyógyítás legtöbb esetben 3-6 hónapig tart. A betegség tünetei azonban később újból jelentkezhetnek.
Gray (600 rad) fölötti sugáradag, negyedfokú sugárbetegség. A kezdeti reakció nagyon hevesen jelentkezik, már a besugárzás után 30 perccel. Gyakran hiányzik a lappangási idő. Erős mérgezési tünetek és vizelési nehézségek lépnek fel. Nehéz légzés, valamint szívműködési, vérkeringési zavarok jelentkeznek. Orvosi ellátás hiányában az ilyen sugáradaggal besugárzottak halála 5-12 napon belül bekövetkezik.
50 Gray (5000 rad) fölötti sugáradag, heveny sugárbetegség. A kezdeti reakció tünetei a besugárzás után azonnal (néhány percen belül) jelentkezik. Nincs lappangási idő. A tünetek a központi idegrendszer zavarait mutatják; az egyensúly és a mozgás zavarai, továbbá remegés lépnek fel. A személyi állomány azonnal (a robbanás után néhány percen belül) elveszti harcképességét. A halál a besugárzás napján bekövetkezik.
A mértékegységekről
A fent látható Gray (vagy röviden Gy) a sugárterhelés mértékegysége. 1 Gray sugárterhelés esetén a sugárzást szenvedett anyag minden kg-jában 1 J sugárzási energia nyelődik el.
Szokás még Sievert-et (Sv) használni, ez az ekvivalens dózis, amely a dózis és a biológiai hatásosság szorzata. Lényegében arról van szó, hogy minden sugárzáshoz (alfa,béta,gamma és neutron sugárzás) egy faktort rendelnek, amely az ionizáló képességéről ad információt.
Régebben használták a rad-ot (R), amely 0.01 Gy-vel volt egyenértékű, valamint a rem-et, amely 0,01 Sv-nek felelt meg, és a röntgent, amely 0,0087 Gy.


A hatásértékelésnél a következő elnyelt sugáradagokat tekintjük számvetési alapnak:
Elszenvedett sugáradag
Harcképtelenné válás
50 Gy (5000 R)
10 percen belül
30 Gy (3000 R)
15-45 percen belül
5 Gy (500 R)
1 órán belül
2,5 Gy (250 R)
24 órán belül
Sugárbetegség szindróma
A sugársérülést követő rövid időn belül, azonban még az akut sugárbetegség fő szakaszának kifejlődése előtt, ún. sugárszindróma alakul ki. A reakció a vegetatív idegrendszer izgalmára vezethető vissza és gyomor-bélrendszeri (anorexia, hányinger, hányás, hasmenés, hasi görcsök, nyálfolyás) valamint neuromuszkuláris (fáradtság, közömbösség, izzadás, fejfájás, láz, vérnyomáscsökkenés) tünetekben nyilvánul meg. A tünetek fellépési ideje, időtartama, valamint a betegség első jelei és a fő szakasz közötti lappangási idő arányos az elszenvedett sugárdózissal.
Az egyes dózistartományokra jellemző tünet-együtteseket ennek megfelelően az akut sugárbetegség csontvelői (hemopoietikus), gyomor-bélrendszeri (gasztrointesztinális) és központi idegrendszeri (neurovaszkuláris) szindrómáinak szokták nevezni. Ezek a sugárszindrómák a már manifesztálódó szervkárosodások szervezeti megnyilvánulásai, és a dózistól függően hosszabb-rövidebb lappangási idő után alakulnak ki. Az egyes sugárszindrómák a valóságban csak ritkán figyelhetők meg izoláltan, az egyéb szervek sérülése - különösen erősen inhomogén besugárzás után - nagymértékben módosíthatja azokat. Különösen érvényes ez a 6 Gray-nél nagyobb dózisok esetén, amikor is a csontvelői károsodás dominanciája mellett egyre nagyobb szerepet játszik már a gyomor-bélrendszer sérülése is. Emiatt az akut sugárbetegségnek a 8-10 Gy közötti dózistartományra jellemző klinikai formáját a sugárbiológiai szakirodalom ún. átmeneti sugárszindrómának nevezi.

ABV-fegyverek: Atomfegyverek IV. rész

Védekezési és megelőzési módok
Az atombomba centrumától távolabb, ahol elsősorban a sugárzás okozza a nagyobb gondot többféleképpen is védekezhetünk a nagyobb sugárdózis elszenvedésétől.
Távolságnövelés
A sugárforrástól távolodva a dózisintenzitás a távolsággal négyzetesen csökken.
A sugárzásban eltöltött idő csökkentése
Fontos módja a védekezésnek a tartózkodási idő csökkentése.
Védő-vértek, sugárvédő falak használata
A távolságnövelés és az időcsökkentés módszerének alkalmazásán kívül, azzal egyidejűleg sokszor szükség van megfelelő védőrétegekre is, amelyen elnyelődik (abszorbeál) a sugárzás, annak intenzitása a veszélyes érték alá csökken.
Árnyékolás
Az alfa-sugárzás hatótávolsága a nagy ionizáló képessége miatt kicsi. Az emberi szövetben ez a hatótávolság 40-60 mikron. Az alfa-sugárzás ellen tehát akár már egy vékony papírlap is védelmet biztosít.
Azonban ha az 
alfa-sugárzó anyag testfelületre, vagy a szervezetbe kerül a nagy ionizáló-képesség miatt jelentős biológiai elváltozást okozhat.
béta-sugárzás ionizáló képessége kisebb az alfa-sugárzáshoz képest, így hatótávolsága nagyobb. A maximális hatótávolság a nagy energiájú gamma sugárzások esetén a levegőben néhány méter, a testszövetben 1,5 cm. Az egész szervezetet kevésbé veszélyezteti, mint a nagy áthatolóképességű gamma-sugárzás, azáltal viszont, hogy a teljes energia egy viszonylag vékony rétegben nyelődik el, elsősorban a bőrt és a szemet károsítják. Megfelelő vastagságú védőlemezek a béta-sugárzások ellen védelmet biztosítanak.
A védőanyagok kiválasztásánál figyelembe kell venni azt, hogy a béta részecskék lefékeződésekor fékeződési röntgen-sugárzás keletkezik, ennek csökkentése céljából elsősorban plexit, műanyagot használnak a védekezésnél.
gamma-sugárzás nagy áthatoló képessége miatt nagy távolságokra képes eljutni, nem beszélhetünk meghatározott hatótávolságról. A dózisintenzitás a távolsággal exponenciálisan csökken, de értéke nem lesz zérus még nagyon vastag réteg után sem. Egy bizonyos rétegvastagság a sugárzás intenzitását a háttér szintjére csökkenti. A nagyobb tömegszámú anyagok (pl. ólom) jobban elnyelik a gamma-sugárzást.
A neutron-sugárzás hasonlóan az alfa-sugárzáshoz, eltérően a gamma-sugárzástól nem energia kvantumok, hanem anyagi részecskék áramlása. A nagy tömegű, töltés nélküli részecskék nagy áthatoló képességgel rendelkeznek, a levegőben is nagy távolságokra képesek eljutni. A gamma-sugárzással szemben a neutron sugárzás elleni védelmet gyors neutronok esetében víz, paraffin, polietilén, lassú neutronoknál kadmium jelentik.
Megelőzés
Elsősorban a kálium-jodid szájon át történő adagolása jelent nagyfokú védelmet, amely megvédi a pajzsmirigyet az esetleg, a besugárzás hatására fellépő rendellenességek ellen.

A sugárbetegség közvetlen következményeinek kezelésére jelenleg nincs gyógymód, viszont a szövődmények gyógyíthatók, a tünetek enyhíthetők.
Nemzetközi szerződések, szabályozások
Miután ledobták Hirosimára és Nagasakira az atombombákat hamar nyilvánvalóvá vált, hogy mekkora pusztító erejű fegyverhez is jutott az emberiség, amit természetesen nem szabad kontrollálatlanul egymás ellen felhasználni, hiszen annak beláthatatlan következményei lennének. Már 1953-ban 
Dwight Eisenhower, amerikai elnök is felszólalt az atombombák ellen, az ENSZ gyűlésén mondta el híres Atoms for Peace szövegét, amelyben nyomatékosan felhívta a figyelmet az atombombák pusztító erejére és felszólalt az atomenergia békés célú használata érdekében.1954-ben az indiai Nehru-tól származott az atomcsend egyezmény ötlete. Amelynek lényege, hogy betiltsák a kísérleti atomrobbantásokat. Az élet viszont elég fura humorral lett megáldva, hiszen ezt a kezdeményezést éppen India fogja majd megszegni, egy titokban, amerikai segítséggel kifejlesztett atombombával.1955-ben megrendezték az első genfi konferenciát, ahol többek között az atomfegyverek és más tömegpusztító fegyverek használatának ellenzése, az atomenergia békéscélú felhasználása szerepelt napirendi ponton.
Még ugyanebben az évben Albert Einstein és Bertrand Russel kiáltványban fordult a világ tudósaihoz, hogy lépjenek fel az atomenergia katonai felhasználása ellen. A felhívást aláírták: Max Born, Percy Bridgman, Leopold Infeld, Frederic Joliot-Curie, Herman Muller, Linus Pauling, Cecil Powell, Joseph Rotblat, és Hideki Yukawa.
1957-ben megalakul a Pugwash Konferencia (Pugwash Conference on Science and World Affairs) Kanadában, amelynek célja olyan gyűlések szervezése, olyan tudósoknak, akik az atomenergia katonai célú felhasználása ellen lépnek fel.
1968-ban létrehozzák a Nemzetközi Atomsorompó Egyezményt. Az országoknak joguk van békés célú atomprogramot folytatni, viszont ez esetben le kell mondaniuk az atombomba fejlesztéséről. Az öt atomhatalom pedig köteles felszámolni nukleáris arzenálját. Ez mind a mai napig nem történt meg, bár folyamatosan szerelik szét az atombombákat, még mindig van belőlük. Továbbá az öt országnak (USA, Szovjetunió, Anglia, Franciaország és Kína) fel kellett hagynia a nukleáris technológia kereskedelmével, olyan országok irányába, amelyek nem rendelkeztek atomfegyverrel. Az atomfegyverrel nem rendelkező és az atomsorompót elfogadó országok pedig lemondtak ilyen technológia beszerzéséről. Azt is tartalmazza, hogy a nukleáris fegyverek nélküli országok lehetővé fogják tenni az ENSZ Nemzetközi Atomenergia Ügynöksége (NAÜ, angolul: IAEA) részére, hogy ellenőrizze nukleáris létesítményeiket. Túl ezen az országoknak meg kell osztaniuk egymással a békés-célú nukleáris technológiát.1972. május 26-án, Moszkvában Richard Nixon és Leonyid Brezsnyev aláírták SALT-I szerződést, amely a szárazföldi telepítésű interkontinentális ballisztikus rakéták (ICBM) és a tengeralattjáróról indítható ballisztikus rakéták (SLBM) mennyiségi korlátozását írta elő. Az ellenőrzésre mindkét fél elsősorban saját katonai felderítő műholdjait használhatta. Egyúttal kötelezettséget vállaltak, hogy nem zavarják egymás technikai ellenőrző berendezéseit. A SALT-I egyezmény része az ún. ABM egyezmény is (Anti-Ballistic Missile Treaty), amely a rakétaelhárító hadászati fegyverrendszerek védelmi rendszerek korlátozásáról szól.1979. június 18-án Leonyid Brezsnyev szovjet főtitkár és Jimmy Carter amerikai elnök írta alá Bécsben a SALT-II megállapodást. A megállapodást a SALT-I 1972-es szerződés következő lépcsőfokának szánták, ám aláírásának ünnepélyes megrendezése ellenére végül nem ratifikálták, így nem léptek érvénybe a szerződésben megfogalmazottak. A szerződés tartalma volt, hogy mindkét fél kötelezi magát hogy a birtokában lévő interkontinentális ballisztikus rakéták (ICBM) indítóberendezéseinek, a tengeralattjáró-bázisú rakéták (SLBM) indítóberendezéseinek és a nehézbombázóknak az együttes száma nem haladja meg a 2400 egységet, míg a több robbanófejes rakétáké az 1320 egységet. Mindkét fél kötelezi magát arra is, hogy nem telepít új ICBM indítóberendezéseket, sem új típusú stratégiai támadófegyvereket.
Atomfegyverek manapság
Az 1960-as években még Anglia, Franciaország és Kína tettek szert atomfegyverekre, mind fissziós, mind pedig fúziós fegyverekre egyaránt. 1974-ben India is kifejleszti atombombáját, majd ugyanebben az évben a Dél-afrikai Köztársaság is csatlakozott az atomhatalmakhoz egy kis időre, ugyanis 1990-ben a hat kész és egy fél kész atomfegyverét megsemmisítette. Aztán gyarapodott a sor még Izraellel, Pakisztánnal, Iránnal és a legújabb tag Észak-Korea. Utóbbi 2002-ben felmondta az atomsorompó egyezményt is. Viszont a világon kb. 30 ország, köztük Magyarország is alkalmas lenne atomfegyver előállítására.
Atomfegyverek Magyarországon
A végére pedig egy apró érdekesség. Magyarországnak is volt saját atomprogramja, igaz ez eleve hamar halálra volt ítélve. A nem teljesen hivatalos atomprogram az 1950-es, 1960-as években indult meg, azonban már 1970-es években már le is állították. Ugyanis a KFKI és a BME atomreaktorai túl kicsik voltak ahhoz, hogy bennük egy atomfegyverre elegendő uránt lehessen előállítani, dúsítani. Bár mindkét reaktor 36%-os tisztaságú uránnal üzemelt, ami bőven túlmutat a békéscélú felhasználáson. A paksi atomerőműben is csak 3,6%-os tisztaságú az urán, amit használnak. Viszont a kellő mennyiséget a kettő együtt is 6 év alatt hozta volna össze és akkor még a technológiáról és egyéb részletek kidolgozásáról nem is beszélve. Azonban sürgős lett volna legalább egy atomfegyver Magyarországnak, legalább a demonstráció miatt. Hogy miért? Egyrészt már javában a hidegháború éveit írjuk, és Magyarország, szovjet csatlósállamként bizony potenciális célpont volt. Másfelől ott volt a román hadsereg betörésének esetleges veszélye is. A II. világháború után Magyarországnak tulajdonképpen nem volt hadserege, ami volt az is szovjet volt főként. Egy esetleges támadás esetén teljesen védtelenek lettünk volna. Azonban az 1970-es évektől a szovjetektől mégis sikerült atomfegyverekre szert tenni. Nem kevesebb, mint 125 (mások szerint 131) atomtöltetet tároltak hazánkban. Rengeteg földalatti bunker, óvóhely és atomfegyver tárolására alkalmas létesítmény áll elhagyatottan vagy még mind a mai napig szigorú őrizett alatt. Elsősorban taktikai, tehát kis- és közepes hatótávolságú, kishatású atomtölteteket tároltak hazánkban. Hogy jelenleg mennyi atomtöltet lehet hazánkban nem tudni.

Nincsenek megjegyzések:

Megjegyzés küldése