2017. május 5., péntek

Irányított energiájú fegyverek 1.





Irányított energiájú fegyverek 1.



Jelen cikkemben röviden, s csupán alapjaiban szeretném bemutatni a címben szereplő fegyvereket, azok jellemzőit, csoportosítását, fajtáit, jelentőségüket.
Amellett, hogy e fegyverek alapjául szolgáló technológiákat békés célokra – pl.: gyógyászat, hírközlés – is fel lehet használni, e cikkben e megoldásokra nem kívánok kitérni.
Mindannyian jól ismerjük a tudományos fantasztikum világából a lézer, plazma, elektro- mágneses fegyvereket, de mik is ezek valójában, s léteznek-e már a valóságban is, vagy még mindig csak a sci-fi filmekben találkozhatunk ezekkel?

1) Mik azok az irányított energiájú fegyverek* (Directed Energy Weapons – DEWs)?

 
Teheti föl bárki a kérdést.
E kategória sokféle technológiát foglal magában, lényegében olyan energia fegyvereket takar, melyek képesek közvetlenül – irányított – energiát (Directed Energy DE – olyan technológiákra utaló fogalom, melyeknek koncentrált elektromágneses sugárzáson alapuló, molekuláris, vagy szubatomi részecskékből álló energianyaláb az eredménye.) juttatni egy meghatározott pontba, s elsődlegesen pusztán az energiával érik el a kívánt hatást – pl.: rombolnak, sérüléseket okoznak, stb.
Egyes fegyverek már a valóságban is, míg mások még csak a tudományos fantasztikum világában léteznek.
A hagyományos fegyverekkel szemben – melyek a kilőtt lövedék kinetikus, vagy kémiai energiáján alapulnak – e fegyverek a célpontot szubatomi részecskékkel, vagy elektromágneses sugárzással bombázzák, mely részecskék, illetve sugárzás fénysebességgel, vagy azt megközelítő sebességgel haladnak céljuk felé.
Amerikai légierő által fejlesztett nem halálos, hordozható lézerpuska

2) Rövid történelmi áttekintés

 
A hadviselés történetét illetően a Vaskortól egészen a középkorig a fegyverek erejét, és hatékonyságát használójuk fizikai ereje – esetleg íjak esetén a felhasznált nyersanyag minősége – befolyásolta; lásd kardok.
A késő középkorban forradalmi változás következett be a puskapor használatára épülő fegyverek megjelenésével. E változás alapjaiban megváltoztatta az addig háborúkat. Attól kezdve nem pusztán a harcosok száma, azok fizikai állapota, illetve a hadvezér taktikai képességein múlott a győzelem, hanem a kémiai energián alapú fegyverek, illetve azok ellen fejlesztett védőfelszerelések használatán is.
Az eltelt századok során a fegyverek egyre modernebbek, hatékonyabbak lettek, de alapvetően a technológiai alapjuk, működési elvük változatlan maradt. Jelenleg is zajlik egy új forradalom a hadviselés terén, mégpedig az irányított energiájú fegyverek fejlesztése és hadrendbeállítása.
Röviden az IEF-k fejlődéséről.

2.1) Mitológia:

A modern megoldások feltalálása előtt is léteztek különböző legendák istenekről, démonokról, akik villámcsapással, vagy egyéb energia alapú fegyverrel sújtották ellenségeiket, mint pl. Zeusz villáma; Thor kalapácsa, stb.

2.2) Ókori feltalálók

A gyújtó tükör, vagy halál sugár elképzelés egészen Archimédészig nyúlik vissza, aki egy állítható fókusz-hosszúságú tükör segítségével felgyújtotta a római hadihajókat (vagy inkább több tükör segítségével, melyeket ugyanazon pontra irányította), amikor azok Syracuse-re támadtak. A későbbiekben is törekedtek egyes feltalálók arra, hogy reprodukálják e tükröt.

2.3) Grindell-Matthews

Az első világháborút követő bámulatos technológiafejlődést követően, rengeteg hitelt érdemlő ilyen fegyverekre vonatkozó elképzelés és tervezet látott napvilágot. Harry Grindell-Matthews a háború után megpróbált eladni a brit légügyi minisztériumnak egy a pusztító sugár elvén működő szerkezetet, de nem járt sikerrel, mivel nem volt hajlandó bemutatni, hogyan működik a szerkezet a valóságban. Az eszköznek, Franciaországba szállítása után, nyoma veszett. Az eset után sokan találgatták vajon mi történt a szerkezettel.

2.4) Robert Watson-Watt

1935-ben a fent említett brit minisztérium felkérte Robert Watson-Watt-t, hogy vizsgálják meg, hogy a halál sugár vajon kivitelezhető-e. Ő és társa, Arnold Wilkins, arra a következtetésre jutottak, hogy nem lehetséges, de a kutatás után javaslatukra, a légi járművek észlelésére a rádió technológiát kezdték alkalmazni, így kezdődött a radar kifejlesztése.

2.5) Tesla

Nikola Tesla egy rendkívül tehetséges feltaláló, tudós, elektromérnök volt. Ő nevéhez fűződik a – s a tévhittel ellentétben nem Edisonéhoz – a váltakozó áramú generátor megalkotása, de megemlíthető még a transzformátor és sok egyéb találmánya is. Jelentős szerepe volt a rádió technológia fejlesztésében is.
Néhány szokatlan kijelentést is tett élete során, többek közt azon állítást is, miszerint kifejlesztett egy új fegyvert, a “teleforce”-t, vagy halálsugarat. Elmondása szerint e fegyver koncentrált részecske sugarakat szór szét a levegőben, s képes földre kényszeríteni akár 10.000 ellenséges repülőgépet is, a védendő ország határától még 250 mérföld távolságon belül is.
Több európai államnak, valamint az Amerikai Egyesült Államoknak is felajánlotta találmányát, de sehol sem járt sikerrel. Mondani sem kell, hogy rengetegen találgatták, hogy hol lehet e találmány, s vajon tényleg képes-e arra, amit alkotója állított.

2.6) H.G. Wells

H. G. Wells „Világok harca” című művében használja először a halálsugár fogalmat olyan értelemben, mint a sci-fi írók a lézert. Leírása szerint a fegyver egy hajlított tükör, mely összegyűjti, s célra irányítja az összegyűjtött hőt.

2.7) Nácik

A második világháború vége felé a nácik szuperfegyverek (Wunderwaffen = wonder weapon) fejlesztésével szerették volna megváltoztatni a háború állását.
Az irányított energiájú fegyverek terén a szónikus technológiában értek el eredményeket.

2.8) Star Wars

Az 1980-as években Ronald Reagan elindított egy stratégiai védelmi programot, melyet “Star Wars”-nak becéztek. A programban részt vevők arra a következtetésre jutottak, hogy a lézerek, talán még az űrbe telepített röntgen lézerek is, képesek megsemmisíteni a közeledő interkontinentális rakétákat. A politikai helyzet miatt végül semmi sem valósult meg e tervből.

2.9) Napjaink

Napjainkban továbbra is folynak a kutatások hatékonyabbnál hatékonyabb DEW fegyverek kifejlesztésére, s mostanra már kézzel fogható eredményeket tudnak a tudósok felmutatni, gondoljunk csak a lézer fegyverek katonai célokra felhasználására irányuló fejlesztésekre.
Thor: nagy energiájú lézer

3) Irányított energia fegyverrendszerek csoportosítása

 
Többféleképpen is csoportosíthatóak:
3.1. Alapvetően kettő + egy csoportba sorolhatjuk e fegyvereket:
• elektromágneses sugárzáson alapuló; illetve
• részecske fegyverek
• fantázia fegyverek, melyek nem léteznek, s nem is építhetőek a tudomány állása alapján
3.2. Aszerint, hogy milyen fajta energiát irányítunk a célpontra, lehet:
• molekuláris,
• szubatomi részecske sugár,
• elektromágneses sugárzás,
• plazma,
• rendkívül alacsony frekvenciájú, avagy
• rendkívül magas frekvenciájú energiasugárzás.
3.3. Használati terület alapján:
• szárazföldön,
• levegőben,
• űrben használt
3.4. Felhasznált energia alapján:
• sugárzás
• elektromágneses
• szónikus
• lézer
• egyéb energia
3.5. Okozott sérülés alapján:
• halálos erejű
• nem halálos erejű (nem-ölő fegyverek)
X26-os taser, rendfenntartó célokranem halálos erejű fegyvereket, példálózó jelleggel, a következőképpen csoportosíthatjuk:
• rendkívül alacsony frekvenciájú elektromágneses fegyverek (elsősorban agykontroll),
• akusztikai,
• rádió frekvencia,
• mikrohullámú lökés,
• magas hangerő

4) IEF-k típusai:

 
Sokféle típusuk létezik, egyesek fizikai sérüléseket okoznak, mások „csupán” zavarják a technikai berendezéseket – pl.: rádiót; megint mások átmeneti, vagy végleges vakságot okoznak, vagy tönkreteszik az elektronikus szenzorokat, stb.
Egyesek szerint a IEF-nek 3 típusa létezik: Lézer Irányított EnergiaNagy Erejű MikrohullámúErős Rádió Frekvenciájú fegyver (4.1).
E fegyverek mindegyike az elektromágneses sugárzás erejét használják, a különbség közöttük a frekvencia terén van, ugyanis az összes elektromágneses sugárzás elrendezhető frekvencia (hullámhossz, energia) szerint, ekkor kapjuk az elektromágneses spektrumot. A 3 fegyver frekvencia szerint sorba rendezve: leggyengébb a rádió, azt követi a mikrohullám, végül a lézer.
Mások a fentitől eltérően a következő felosztást fogadják el: LézerRádió frekvenciaRészecske sugár (4.2).
Nem tisztem, hogy döntsek bármelyik felosztás létjogosultsága, helyessége tekintetében, így célszerűnek tartom mindkettőt röviden bemutatni.

4.1) Első felosztás

4.1.1) Lézer

IEF1_4A lézer egy speciális fényforrás, mégpedig olyan, amely stimulált emissziót használ egybefüggő fénysugár létrehozására.
A lézernyaláb keskeny és nagyon kis széttartású nyaláb. A lézerfény – mely egyszínű – nagyrészt párhuzamos fénysugarakból áll, nagyon kis szóródási szöggel. Ezzel nagy energiasűrűség érhető el szűk sugárban, a sugár által megtett távolságtól függetlenül
Bár a lézerek hatásfoka elég alacsony, mivel a kilövő energia nagyon keskeny nyalábba koncentrálódik, abban a kis térrészben az energia-leadás jelentős lehet. Különösen érvényes ez az impulzus üzemmódú lézerekre, amelyek nem folytonosan világítanak, hanem nagyon rövid ideig, ezért nagy teljesítményű impulzusokat bocsátanak ki.
A lézerek vagy folyamatos sugarat bocsátanak ki, avagy rövid erős impulzus lövéseket lőnek, a spektrum infravöröstől ultraibolya tartományában. Amint a lézernyaláb eléri a célpontot, a nyalábban lévő fotonok energiája akár olvadásig felmelegítik a célt.
A lézer sugár ereje kétféleképpen csökkenhet. Az egyik ok a ’blooming” jelenség, mely akkor lép fel, ha a lézer kellően felmelegíti az atmoszférát, miközben áthalad rajta, s plazmává alakítja. E jelenség hatására a lézersugár elveszti fókuszáltságát, így gyengül az ereje. A másik ok, olyan természeti jelenségek, mint köd, eső, füst..
A lézerrel nagy energiájú impulzust lehet létrehozni. Pld.: 1 millió joule energiájú lézer impulzus 200g erős robbanóanyag pusztító erejével ér fel.
A lézereknek ma már több típusa létezik: gáz (atom gáz / ion gáz / molekuláris gáz lézerek); kémiaiszabad elektronX-ray (röntgen); szilárd állapotúfestett lézerek.
Másféle csoportosítás alapján megkülönböztetünk: alacsony és magas energiájú lézert
Az előbbit elsősorban kommunikációra, érzékelők zavarására, gyógyítási célokra alkalmazható, míg utóbbi támadási, pusztító célokra is.
A lézerek segítségével könnyedén megsemmisíthetőek az ellenséges rakéták tüzérségi lövedékek. A lézerek nagy előnye, hogy akár pontszerűen is lehet támadni velük, pld.: egy lézer képes elpusztítani egy kamiont is, de előbbi tulajdonságának köszönhetően csupán a motor is megsemmisíthető, így minimalizálható az emberi sérülés lehetősége.
Elsősorban az amerikaiak tettek jelentős lépéseket a lézerfegyverek fejlesztése terén, gondoljunk a lézer puskákra, vagy a légi lézerre (ABL), melyet rakéták megsemmisítésére terveztek.
Az amerikai hadsereg két jelentősebb lézer programot folytat:A) Nagy Energiájú Taktikai Lézer (Tactical High-Energy Laser = THEL) fejlesztése 1996-ban kezdődött Izrael és USA részvételével. A program egy olyan lézer kifejlesztése célozta, mely képes elpusztítani a Katyusha rakétákat, tüzérségi lövedékeket. A THEL rendszer radar segítségével észleli a közeledő célpontokat. Az így nyert adatokat egy optikai követő rendszerhez továbbítják, mely pontosan meghatározza a cél helyzetét, illetve nyomon követi annak mozgását. Az összeállított adatok alapján a kémiai lézer tüzel, s megsemmisíti a célt.
THEL
B) Repülőre szerelt lézer (Airborne Laser = ABL) egy módosított Boeing 747-re szerelt megawatt erejű kémiai lézer, melynek feladata, az ellenséges rakéták megsemmisítése. A rendszer több elemből épül: infravörös érzékelővel érzékeli a rakéta kilövéseket; a követő lézer (TILL); az irányzó lézer (BILL); végül a jód-oxigén kémiai lézer (COIL).
Amint a TILL érzékeli a kilövést a BILL felméri az atmoszférikus torzítást a rakéta és a COIL között. Ezután az adatokat a tükör rendszerhez továbbítják, ami pontosítja az adatokat, s a lézer pedig tüzel. A becsapódáskor a rakéta burkolata felhevül, megolvad s deformálódik, és megsemmisül.
ABL

4.1.2) Mikrohullám

A mikrohullámok, elektromágneses hullámok a Terahertz (THz) tartományénál hosszabb hullámhosszal, de rövidebbel, mint a rádióhullámok. A mikrohullámok hullámhossza megközelítőleg a 30 cm–től (1 GHz-es frekvencia) az 1 mm–ig (300GHz) terjed.
A mikrohullámú tartomány az alábbiakat tartalmazza: ultra-magas frekvenciájú (UHF) (0.3-3 GHz), szuper magas frekvenciájú (SHF) (3-30 GHz), végül az extrém magas frekvenciájú (EHF) (30-300 GHz) jeleket.
A mikrohullám alkalmazási területei:
• A 
mikrohullámú sütő egy magnetron mikrohullámú generátort használ arra hogy egy körülbelül 2,5 GHz-es mikrohullámú sugárzást hozzon létre főzés céljából. A mikrohullámok a főzendő ételben a víznek és egyéb vegyületeknek a molekuláit rezegtetik, illetve forgatják. A rezgés súrlódást okoz, ami hővé alakul, ami az ételt melegíti.
• A 
mikrohullámokat műsorszórásban is használják, mivelhogy a mikrohullámok könnyebben hatolnak át a föld atmoszféráján, kisebb zajjal, mint a hosszabb hullámhosszak. Ráadásul sokkal nagyobb a mikrohullámú spektrum sávszélessége, mint más rádiófrekvenciás tartományoké.
• A 
radar szintén mikrohullámokat használ arra, hogy meghatározza tárgyak távolságát, sebességét és egyéb tulajdonságait.
• 
WLAN protokollok, mint a Bluetooth is a szabadon felhasználható 2,4 GHz–es frekvenciát használják.
• A 
MAN hálózati protokollok, mint például a WiMAX (Worldwide Interoperability for Microwave Access) is az IEEE 802.16-os specifikáció alapján működnek.
• A 
koaxiális kábelen továbbított kábeltévé és Internet szolgáltatások és a felszíni televízió műsorszórás is az alacsonyabb mikrohullámú frekvenciát használják.
• Mikrohullámokkal 
energiát is lehet átvinni nagy távolságokra, a II. világháború utáni kutatások ennek lehetőségeit kutatták. A NASA az 1970-es években dolgozott egy olyan rendszeren, ami orbitális napkollektorok energiáját gyűjtené össze és küldené le a földre mikrohullámok segítségével.
• A 
maser egy a lézerhez hasonlító eszköz, ami mikrohullámú frekvenciákban működik.
A nagy erejű mikrohullámú fegyverek egy magas frekvenciájú rádió energia sugarat bocsátanak ki. Hasonlóan a mikrohullámú sütőkhöz e fegyverek is megawatt hullámhosszú elektromágneses hullámot hoznak létre.
E fegyverek elég erősek ahhoz, hogy emberekben, mikrohullámú sugárzás ellen nem megerősített tárgyakban komoly károkat okozzon. A frekvencia alacsonyra állításával megzavarható az elektronikai eszközök működése, míg magas frekvencián képes elégetni azokat.
A fegyverek hatalmas előnye a lézerrel szemben, hogy területet is képesek lefogni, továbbá nem csökkentik az erejüket olyan természeti jelenségek, mint pl.: köd; ráadásul beállítástól függően úgy lehet ezekkel támadásokat, szabotázs akciókat végrehajtani, hogy magát a támadás forrását fel sem ismerik.
Elsősorban tehát elektronikai eszközök ellen igen hatásosak, mivel egy rövid és igen erős energia impulzust bocsát ki, s gyakorlatilag – megfelelő erősség esetén – szétégeti a célpontot, de a fegyver emberek ellen is hatásos, igaz nem-ölő fegyver kategóriába sorolandó.
Mikroból, mikrohullámú fegyver…
Az amerikai hadsereg 2 mikrohullámú fegyvert fejlesztett ki eddig:A) a légierő által fejlesztett Active Denial System, mely fejlesztését a 90-es évek közepén kezdték. E fegyvert fájdalom sugárnak is nevezik, hatása miatt.
ADSA fegyver egy milliméter vastagságú 95 GHz frekvenciájú, erős elektromágneses hullámot bocsát ki a célpont felé. Az elektromágneses sugárzás hatására az ember bőrében lévő víz molekulák hőmérséklete 55 fokra nő, így a sértett úgy érzi, mintha égetné valami, de nem szenved égési sérüléseket!
B) valamint a Vigilant Eagle, rakéta védelmi fegyver, mely elvileg képes megvédeni a légi járműveket a földről indított rakétákkal szemben.
A amerikai hadsereg egy teljesen más irányú próbálkozása az E-bomba. Egy ideje próbálkoznak olyan rakéta, vagy bomba létrehozásával, mely becsapódásakor azonnal és csupán pár pillanat erejéig, erős energia impulzust bocsát ki, melynek segítségével komoly csapás mérhető az ellenség elektronikai állományára.
Elsősorban a légi járműről indítható cirkáló, valamint a haditengerészet Tomahawk rakétáira terveztek ilyen robbanófejeket.
Vigilant Eagle

4.1.3) Rádió technológia

Működése sokban hasonlít a mikrohullámú fegyverekre, ezen esetben arról van szó, hogy egy erős rádióhullámot bocsát ki a szerkezet, s ezen impulzus károsítja a célt – működésében tehát nagyban hasonlít az elektromágneses impulzust kibocsátó szerkezetekhez. E fegyvereket a magastól az ultra magas frekvenciáig terjedő skálán lehet beállítani (100 MHz – 5 GHz), s így az előbbi intervallumon belül minden frekvencián egyszerre tudnak hatni, így maximalizálva a pusztító erőt.
Nagy előnye, hogy ez is területre ható fegyver, s a széles frekvencia tartománynak és pontosságának köszönhetően akár egyes célpontok is támadhatóak, így elkerülhető, hogy a célterületen lévő szövetséges erők is sérüljenek

4.2) Második felosztás

4.2.1) Lézer

Ugyanazt mondhatjuk, mint az első felosztás esetében, nincs különbség.

4.2.2) Rádió Frekvencia

E felosztás esetében összefoglaló kategóriaként értendő a Rádió frekvencia fegyverek, ide sorolandók: Nagy Erejű MikrohullámúElektromágneses Sugárzás, valamint a Rádió Frekvencia. E fegyverek közös jellemzője, hogy hatalmas elektromos energia segítségével pusztítanak – miután már mindegyikről, részletesen, vagy érintőlegesen volt szó, így nem térek ki egyikre sem.

4.2.3) Részecske sugár

E fegyverek az atomok, vagy elektronok hatalmas energiájú energia-mezejét használják fel arra, hogy célpontjaikban kárt okozzanak, azáltal, hogy megbontják a célpont atom, vagy elektron szerkezetét. A részecske fegyver elgondolás, lényegében a részecske gyorsítás gondolatából alakultak ki. A részecske fegyverek elméletileg megvalósíthatóak, igaz még senki sem mutatott be ilyen fegyvert.
Hátrányuk, hogy hatalmas mennyiségű áramot, igen erős mágneses mezőt és igen hosszú gyorsítási pályát igényelnek.
A részecske fegyvereknek két típusa létezik, egyik, mely töltött részecskéket használ, míg a másik, mely alapállapotú, nem töltött részecskéket.

5) Jelentőségük, előnyeik

 
Miért fejlesztenek ilyen fegyvereket?
Tehető fel e kérdés is, hisz a jelenleg hadrendben lévők is elég hatékonyak. Jobbára két ok miatt, egyrészt, mert jóval hatékonyabbak lehetnek, mint a jelenlegiek, másrészt jóval hatékonyabb védelmi rendszert lehet kiépíteni segítségükkel.
Ne feledjük, hogy a precíziós rakéták segítségével könnyen csapást lehet mérni bármely állam kulcsfontosságú katonai, civil létesítményeire. A hagyományos védelmi rendszereknél hatékonyabb védelmet biztosítanak az IEF-k. Egyrészt, hagyományos fegyverekkel szembeni tulajdonságaiknál fogva, másrészt mivel jóval gazdaságosabb és könnyebb üzemeltethetőek.
Fent említettem, hogy e fegyverek olyan tulajdonságokkal rendelkeznek, melyekkel hagyományos társaik nem. A következők említhetőek:
• Sebesség: Egyik igen jelentős jellemző, hogy vagy fénysebességgel, vagy azt megközelítő sebességgel halad a kilőtt energianyaláb. Szemben a hagyományos fegyverekkel, ilyen gyorsasággal szemben nem lehet hatékonyan védekezni, pld.: egy rakéta esetében, ha időben észlelik akár meg is semmisíthetik azt, ám egy ilyen gyors fegyver esetében elképzelhetetlen.
• Gravitációs immunitás: Az energianyaláb nemcsak roppant gyorsan halad, hanem minek után szinte nincs tömege, így nem hat rá a gravitáció és egyéb légköri hatások sem. A hagyományos fegyverek esetében komoly ballisztikai számításokat kell végezni a pontos találat érdekében, számolva a lövedékre ható erőkkel, az energia fegyverek esetében erre nincs szükség.
• Precízió, rugalmas célpont / pusztító-erő meghatározás: Az IEF-k – előbbiekre tekintettel – rendkívül pontos célzást tesznek lehetővé, így az ellenség elpusztítható anélkül, hogy civil, szövetséges célpontok károsodnának. E fegyverek további jelentősége, hogy beállítható mekkora mennyiségű energiát lőjön ki, így az IEF-k lehetnek gyenge, nem ölő, fegyverek, de erős, pusztító fegyverek is – beállítás kérdése csupán. E fegyverek a tömegpusztító fegyverek ellentétei, precíziós nem ölő-fegyverek – legalábbis ekként is használhatóak.
• Megfizethetőség: E fegyverek telepítésük után, viszonylag olcsón üzemeltethetőek, legalábbis összehasonlítva a hagyományos fegyverek üzemeltetési költségeivel. Annak ellenére igaz a fenti állítás, hogy a rendszer kiépítése igen költséges, de mivel csupán energiát használ, s nem, igen drága lövedékeket, rakétákat, így olcsó üzemeltetni.
• Többszöri felhasználhatóság: E fegyvereket meghatározott időnként (jobbára újratöltődési idő) folyamatosan lehet használni, semmi más nem kell hozzá, mint energia, s fegyvertől függően pld.: hő is. Szemben a hagyományos fegyverekkel, melyek korlátozott kapacitással rendelkeznek, s újratöltésük több időt visz el.
Az idő mellett másik fontos tényező a raktározás, a lövedékeket, rakétákat lehetőség szerint védett helyen kell tárolni, míg az energia fegyverek esetében ilyen probléma szóba sem jöhet – mellesleg e tényező tovább csökkenti az üzemeltetési költségeket.
Végül e technológiai eszközök nemcsak fegyverként használhatóak – lásd: lézer.
• Sokféleség: Az IEF-k sokféle helyszínen bevehetőek, elhelyezhetőek, s energia igényük is igen eltérő. Például védelmi célokra gyengébb fegyverek is elegendőek, hisz e precíziós fegyverekkel könnyedén a közeledő rakéta leggyengébb pontjára lehet tüzelni, s megsemmisíteni azt.

6) Néhány jelenleg is futó IEF program

 

6.1) Lézer fegyverek tekintetében

A Zeusz lézer: 
Zeusz lézerrel felszerelt humvee AfganisztánbanEredetileg egy humvee-ra szerelhető kémiai lézer megépítéseként indult a program. A Zeusz-HLONS igazából átmenetet képez a kémiai és a szilárd lézer között, melynek egyébként 300 méteres hatósugara van. Elsődleges feladata azonosítatlan tárgyak, pl.: aknák megsemmisítése, azáltal, hogy erős, és forró lézer sugárral megfesti azokat, így azok felrobbannak. Egyes források megerősíteni vélik, hogy 2003-ban használták Irakban is.
Az F-35 és AC-130 gépekre szerelt lézerek:
A 100-kilowattos infravörös lézer, melyet egy Lockheed-Martin F35-ra szereltek sokkal hatékonyabb, mint bármely eddig bevetett lézer.
Elsősorban levegőből és földről indított rakéták, más légi járművek, földi célpontok megsemmisítésére tervezték.
A Lockheed számításai alapján 2010-2015 között már hadrendbe tudják állítani e fegyverrel felszerelt gépet.
IEF1_11

6.2) Rádió Frekvenciát felhasználó fegyverek tekintetében

E-bomba:
Már volt róla szó
IEF1_12
Shiva Star: 
Shiva star eredetileg egy részecske fegyver kifejlesztésére irányuló program volt, Ronald Reagan “Star Wars” programja keretében. Jelenleg Shiva Star az egyik legerősebb elektromágneses fegyver a világon.
IEF1_13
Active Denial Technológia:
Volt róla szó korábban (lásd: 4.1.2 / A.)
Sinus 6: Shiva Star Junior: 
A Sinus-6 egy több gigawatt erejű sugarat képes kilőni, 200-szor másodpercenként.
Haditengerészet Védelme – ismeretlen a program neve:
E rendszert vízi járművek számára fejlesztik, mely segítségével megsemmisíthetik más vízi járművekről rájuk lőtt lövedékeket.

6.3) Részecske fegyverek tekintetében

Különösen Amerika érdeklődik e fegyverek iránt (s valószínűleg Oroszország is), a Csillagháborús terv („Star Wars” program) keretében több kutatás is folyt a lehetséges katonai felhasználhatóság terén.
Jelenlegi programok közül a Medusa részecskesugár fegyver említhető, melynek energiaforrásaként egy sima katonai generátort használnak, erősen kísérleti fázisban van még.

7) Konklúziók

 
Az irányított energiájú fegyverek mára – mint ahogy ezt a cikk is igazolja – valósággá váltak, s többet közülük már hadszíntereken is bevetettek.
Kérdéses hogyan fogják e fegyverek megváltoztatni a jövő háborúit, mikor jön el – ha eljön valaha – IEF-kkel vívott háború. Sokat hallhatunk már ilyen fegyverekről, de igazából nagyon kevés megbízható forrás létezik, mivel e fejlesztések a legnagyobb titokban folynak, így igazából keveset lehet tudni az IEF-k jelenlegi helyzetéről.
Azon kevés információ alapján, ami így, vagy úgy kiszivárgott, úgy tűnik, hogy – s a történelem is ezt igazolta – minden hadsereg érdeklődik e fegyverek után, s főleg az erős államok – pl.: USA, Kína.
Úgy vélem a jövőben számolnunk kell az IEF -k elterjedésével, igaz nem jelentenek megoldást minden harci szituációra, de mindenképpen rugalmasabbá teszik azon haderőt mely használja az IEF-ket.
Természetesen nem fogják kiszorítani hagyományos társaikat, legalábbis egy jó ideig, de mindenképp számolni kell egyre gyakoribb megjelenésükkel a hadszíntereken, mint ahogy pl. legutóbbi iraki háborúban is vetettek már be.

Felhasznált irodalom:

 
  • http://www.heritage.org/Research/NationalSecurity/bg1783.cfm (The Use of Directed-Energy Weapons to Protect Critical Infrastructure)
    – http://www.answers.com/topic/directed-energy-weapons
    – http://xiandos.info/Directed_energy_weapons
    – http://www.janes.com/defence/news/jdw/jdw060825_1_n.shtml
    – http://www.abovetopsecret.com/forum/thread36894/pg1
    – http://hu.wikipedia.org/wiki/Mikrohullám
    – http://www.heritage.org/Research/NationalSecurity/bg1931.cfm (The Viability of Directed-Energy Weapons)


Orosz „válasz” a nyugati lézerfejlesztésekre



Oldalunkon a közelmúltban számos olyan hír került publikálásra, mely az aktuális, irányított energiájú fegyverek lehetséges alkalmazásáról szólt. Noha a hivatalos kommunikáció szerint nem érett még meg arra, hogy emberi életeket vagy kiemelt jelentőséggel bíró objektumokat védjen, a fejlődés a technológia e területén is megállíthatatlan. Az orosz tudósok nem a „CD” rögzítését oldották meg a veszélyeztetett eszközökre, hanem egy olyan speciális szűrőt fejlesztettek ki, mely az optikai berendezéseket igyekszik megóvni a lézersugár károsító hatásától.
Dmitrij Csesznyokov – a Szibériai Állami Geodéziai Akadémia nanotechnológiával foglalkozó egyetemi karának dékánja – szerint számos ország végez fejlesztéseket nagy energiájú lézerekkel kapcsolatban, melyek képesek a katonai eszközökben használt érzékelők kiiktatására, legyen az éjjellátó rendszer vagy az irányításért felelős optikai megoldás.
Hadseregünk szembesülhet ezzel a „problémával”, így kifejlesztettünk egy olyan beépíthető szűrőt, mely segítségével megóvható a kiszemelt eszköz („szeme”) a lézersugártól” – nyilatkozta Csesznyokov és hozzátette, hogy ezzel a pilóta nélküli eszközök (UAV) túlélési esélyei is megnövekedhetnek (amennyiben a fent említett módon akarnák semlegesíteni).
A kutatók elmondása alapján a szűrő kismértékű módosítás alkalmazásával beépíthető és eközben a költségek sem fognak az egekbe szökni. Ezen felül a rendszer működőképességét már sikerrel tesztelték és a rendszeresítésről már folynak egyeztetések az orosz haderő illetékeseivel.







Készül az orosz hatodik generációs vadászbombázó



Még szolgálatba sem állt az ötödik generációs vadászbombázójuk, az orosz hadiipar máris gőzerővel dolgozik a következő generációs repülőgépek fejlesztésén.
Először 2013-ban számoltunk be arról, hogy hatodik generációs repülőgépet fejlesztenek az oroszok. Az akkori hírek egy pilóta nélküli típusról szóltak, semmi több konkrétummal. A napokban azonban több hír is érkezett a témában.
Először Dmitrij Rogozin miniszterelnök-helyettes jelentette be, hogy a Szuhoj tervezőiroda bemutatta számukra a hatodik generációs típusuk első vázlatait. A koncepció nem csak a gép kialakítására terjed ki, hanem annak fedélzeti rendszereit és fegyverzetét is vázolták. Elmondta, hogy a gép két változatban készül: lesz ember vezette és pilóta nélküli variánsa is.
A PAK-FA csak jövőre áll hadrendbe, de már a következő generációs gépeken dolgozik a Szuhoj | Fotó: Szuhoj
A PAK-FA csak jövőre áll hadrendbe, de már a következő generációs gépeken dolgozik a Szuhoj | Fotó: Szuhoj,
Emellett Rogozin a távolabbi jövőről is beszélt. Megemlítette, hogy folyamatosan folynak a kutatások a jövőt illetően, már a hetedik generáció alapjait is vizsgálják.
A közeljövőről is szó esett. A berepülési program jelenlegi állása szerint még idén befejeződik az ötödik generációs típusuk tesztelése, így jövőre beindul a PAK-FA sorozatgyártása. 2020-ig 55 darabot tervez átvenni belőle az Orosz Légierő.




Pilóta nélküli 6. generációs gépet fejlesztenek az oroszok



Augusztus 26-án Moszkvában jelentette be az Orosz Légierő korábbi vezetője, Pjotr Dejnekin, hogy az orosz mérnökök egy pilóta nélküli “hatodik generációs” harci gépet fejlesztenek.
A harci gépek hatodik generációja nagy valószínűséggel pilóta nélküli lesz. Természetesen mi aktívan dolgozunk ezen.” – nyilatkozta egy interjúban Dejnekin, aki nem nevezte meg az új generációs drónt fejlesztő cégeket.
A MiG Skat | Forrás: gunpoint-3d.com
A MiG Skat vajon zsákutcának bizonyult? | Forrás: gunpoint-3d.com,
Oroszországban több vállalat is foglalkozott már pilóta nélküli eszközökkel, legismertebb ezek közül a MiG Skat elnevezésű típusa. A tervezőiroda egy májusi interjúban közölte egy, a kereskedelmi minisztériummal kötött szerződés után, hogy kész kutatást és fejlesztést végezni egy UCAV kategóriájú típussal, melynek a Skat lenne az alapja.
Mihail Pogoszjan, a UAC elnöke azt nyilatkozta tavaly novemberben, hogy a Szuhojnak kéne a felderítő és támadó UAV-ket gyártania a közeljövőben.
Bármelyik iroda is kapja a hatodik generációs típust, óriási szakadékot kell átugrania, mivel Oroszországban nem állt még szolgálatba egy potens, saját fejlesztésű pilóta nélküli repülőeszköz sem.




2030-ra készülhet el a Leopard 3?



A német védelmi minisztérium pénteki parlamenti bejelentése alapján aktív egyeztetések folynak a német és francia kormány között egy közös fejlesztésű, új generációs harckocsi létrehozásáról.
Markus Grübel védelmi miniszter helyettes arról beszélt, hogy 2015-2018 között közös tanulmányok készülnek majd a szükséges technológiák és koncepciók területén. A vélhetően majdan a Leopard 3 nevet kapó típus elkészültének tervezett dátumát 2030 környékére, a Leopard 2 hadrendben állításának 5 évtizedének végére teszik az értesülések. (A nagyon sikeres Leopard 2 hadrendbe állítása, az amerikai M1 Abrams-et 1 évvel megelőzve, 1979-ben kezdődött meg.)
Mielőtt valaki még azt gondolná, hogy a T-14 Armata Győzelem napi bemutatkozása a fő kiváltó ok érdemes megemlíteni, hogy ezen fejlesztés anyagi támogatásának előkészítéséről már a tavalyi évben is lehetett olvasni. Ez persze nem akadályozta meg az orosz illetékeseket, hogy lecsapjanak a magas labdára: az orosz védelmi szektorért felelős miniszterelnök-helyettes, Dmitrij Rogozin egy vasárnap esti tv műsorban beszélt erről, melynek lényeg úgy foglalható össze, hogy lám, a németek és a franciák 2030-ra új harckocsit akarnak összehozni, azaz mindössze 15 évvel maradnak el az orosz fejlesztésektől. Rogozin mindezt azzal fűszerezte, hogy az orosz harckocsi fejlesztés a T-34-es óta mindig a nyugati fejlesztések előtt járt.
Nos időnként valóban, de ez azért egy igen merész kijelentés volt. Persze Rogozintól nem idegenek az ilyen jellegű megnyilvánulások. :)
A T-14 Armata egyébként még fejlesztés alatt áll, nem végleges a konstrukció. | Fotó: Vitaly Kuzmin
T-14 Armata egyébként még fejlesztés alatt áll, nem végleges a konstrukció. | Fotó: Vitaly Kuzmin,
T-14 Armata egyébként még fejlesztés alatt áll, nem végleges a konstrukció. | Fotó: Vitaly Kuzmin">
Ha Európa következő generációs, élvonalbeli harckocsijának fejlesztése tényleg zöld utat kap, akkor az a Leopard 2-vel ellentétben valóban német – francia fejlesztés lesz – ha más miatt nem is, akkor azért, mert a Leopard 2 összehozásáért felelős, családi tulajdonban lévő Krauss‐Maffei Wegmann közös vegyesvállalatot hoz létre a francia állam tulajdonában lévő Nexter vállalattal.




Újabb lézerteszt a tengerentúlon



Noha a hírek zöme a fejlesztések aktuális állásáról szól, tagadhatatlan, hogy mind Európában, mind az Egyesült Államokban törekednek a kellő technológiával rendelkező vállalatok, hogy mihamarabb (első körben) védelmi berendezésekbe adoptálják a koncentrált fénysugár erejét.
A Lockheed Martin ezúttal nem bízta a véletlenre, a közelmúltban egy 30 kilowatt teljesítményű YAG-lézer tesztjét hajtotta végre, mely egyedülálló lett azáltal, hogy a nyaláb minőségét és az elektromos rendszerek hatásfokát sikerült állandó szinten tartani. Ezzel mérföldkőhöz érkeztek, ami kiemelkedő jelentőségű lesz a későbbiekben a hordozóplatform számára testre szabott eszköz létrehozásának, legyen szó nagy hatótávolságú légi, vízi vagy szárazföldi felhasználásról.
A nagy energiájú lézer a szíve egy ezen alapuló berendezésnek. A 30 kilowattos teljesítmény elérése elkötelezettségünket mutatja a nagy energiájú lézerfegyverek és erőforrásigényes energiaellátásuk fejlesztése terén, hogy a „fénysebesség” az egyedi katonai védelmi műveletek során alkalmazható legyen” – nyilatkozta Dr. Ray O. Johnson a Lockheed alelnöke és műszaki igazgatója.
Habár jelentős teljesítményt tudnak felmutatni, taktikai felhasználása egy ilyen rendszernek jelentősen korlátozott mivel a „célhardvernek” tekinthető katonai járművek és repülőgépek fedélzetére eme formájában nem telepíthető. S, hogy mi ennek az oka? A működéshez szükséges energia biztosítása, a nem épp kompakt méret és az ehhez társuló hűtési igény, melyre egyedül – ha teszt jelleggel is – csak a hadihajókon nyílhatna lehetőség.
Erre mondják, hogy áramvonalas, mint egy tégla l Forrás: geek.com
Erre mondják, hogy áramvonalas, mint egy tégla l Forrás: geek.com,
A sikeres működés mellett azonban akadt még öröm az ürömben. A Lockheed Martin tudósai az eddigi fejlesztések színe-javát felhasználva egy majdnem tökéletes sugárnyalábot alkottak, mely a szilárdtest lézerekhez képest közel 50 százalékkal kevesebb energiát igényel a működése folyamán. A „Spectral Beam Combining” névre keresztelt fejlesztés titka a több, különböző hullámhosszú nyalábot kibocsátó egység melyek egy pontba sugároznak, ahol egy magas minőségű, pusztító „monosugár” születik.
A fejlesztési eredményeink a lézerkomponensek területén, valamint a „nyalábegyesítő” rendszer fejlettsége és magas minősége biztosítja sikerünket egy kis tömegű, strapabíró szerkezet létrehozására katonai helikopterek, vadászrepülőgépek, hajók és teherautók védelmére” – tette hozzá Dr. Johnson előreszaladva kissé az időben, mintha már csak az utolsó simítások hiányoznának a remekmű befejezéséhez.
Ha létezne, sem kötnék nyilván a közvélemény orrára és a feltételezés sem lenne ok nélküli az amerikai gyártó esetében, mivel az irányított energiájú fegyver fejlesztésén közel 30 éve ügyködik már, amihez az Aculight (a világ élvonalába tartozó lézerfejlesztő cég) 2008-as felvásárlása csak pozitívan járult hozzá.




Sikeres lövészetet hajtottak végre a Pike „minirakétával”



A Raytheon üdvöskéje még októberben bizonyította rátermettségét és fejlesztője állítása szerint a Pike büszkélkedhet a világ egyetlen „kézből” indítható nagy pontosságú eszközének címével.
Noha a mindössze 42,6 cm hosszú és kevesebb mint egy kilogrammot nyomó lövedék hordozóplatformja igen sokrétű lesz, a Texas államban végrehajtott teszt célja az volt, hogy a rendszerben lévő gépkarabélyok alá szerelhető gránátvetőkből sikerrel alkalmazható e. A lövészet folyamán mind az M203, mind az EGLM (Enhanced Grenade Launching Module) sikeresen indítottaa Pike-ot, majd az a célterületen 2,1 kilométerrel távolabb be is csapódott.
Foto: Raytheon Forrás: defense-update.com
Foto: Raytheon Forrás: defense-update.com,
A Pike félaktív lézeres keresője segít a mozdulatlan vagy lassan mozgó, közepes távolságra elhelyezkedő célpontok leküzdésében. Ez az új irányított fegyver olyan pontossággal és hatósugárral ruházza fel a katonát, melyet eddig sosem láthattunk a csatatéren. A Pike egyre csak okosabb és okosabb lesz ahogy a fejlesztés folytatódik. Dolgozunk rajta, hogy a kommunikáció és egyben célzás repülés közben is megoldott legyen a jövőben” – nyilatkozta J. R. Smith, a Raytheon Advanced Land Warfare Systems igazgatója.
Hogy az indítás helye ne legyen könnyen azonosítható, a rakéta hajtóműve csak akkor kapcsol be, ha az indítót 8-10 láb (nagyjából 3 méter) távolságra már elhagyta, ezen felül igyekeztek magát az indítást füstmentessé tenni. Legnagyobb előnyének azt tartják, hogy egyáltalán nem szükséges jármű jelenléte az alkalmazáshoz, míg az egyik katona egy lézeres célmegjelölővel megjelöli a célt, addig a másik tüzel, a Pike pedig minimum 4-5 méteres pontossággal csapódik céljába minimalizálva a járulékos veszteséget.
A Pike jelentősége annak tekintetében igazán nagy, hogy az M203 maximális lőtávolságát 350-400 méter körülire tartják, forrástól függően. A képen egy amerikai tengerészgyalogos indít útjára egy gránátot. Forrás: youtube.com
A Pike jelentősége annak tekintetében igazán nagy, hogy az M203 maximális lőtávolságát 350-400 méter körülire tartják, forrástól függően. A képen egy amerikai tengerészgyalogos indít útjára egy gránátot. Forrás: youtube.com,
Mint a nyilatkozatból kitűnik, a Pike „reszelgetése” tovább folytatódik és a gránátvetőből indítás mellett dolgoznak az integrálásán pilóta nélküli repülőgépek, kisebb hajók, katonai terepjárók és távirányítású fegyverplatformok fedélzetére. A tervek szerint ezzel a technológiával a gránátvetők hatásos lőtávolságát 1,5 kilométerre lehet majd növelni.




Irányított energiájú fegyverek 2.



Elektromágneses fegyverek

 
Az irányított energiájú fegyverek kérdésével foglalkozó korábbi cikkemben általánosságban mutattam be e fegyvereket, jelenlegiben csupán az IEF-k két fő típusa közül az elektromágneses fegyverekkel foglalkozom.
Mint korábbi cikkemben, ezúttal is inkább általános áttekintést kívánok adni, s nem részletes ismertetést, mivel igen terjedelmes témáról van szó, s egy cikknek méretbeli korlátai is vannak.

1) Technológiai háttér, röviden

 

1.1) Elektromágnesesség; elektromágneses sugárzás; -hullám

Az elektromágnesesség az elektromágneses mező fizikája. Az elektromágneses mező az elektromos és mágneses mezők által létrehozott, a tér teljességét betöltő hatásmező.
Míg az elektromos mező a statikus elektromosságot előidéző töltés eredménye, addig a mágneses mező az elektromos töltés mozgásából származik és az állandó mágnesekhez hasonló mágneses erőben nyilvánul meg.
Mindezeken felül, a fény- és rádióhullámok nem mások, mint az elektromágneses mező megháborításának mozgása, amit elektromágneses hullámoknak hívunk. Tehát minden optikai, vagy rádió-frekvenciás jelenség ténylegesen elektromágneses természetű.
Az elektromágneses sugárzás egymásra merőlegesen haladó oszcilláló elektromos és mágneses tér, mely a térben hullám formájában terjed fénysebességgel energiát és impulzust szállítva.
Részecskéi (kvantumai) a fotonok. A 380 nm és 780 nm közötti hullámhosszú elektromágneses sugárzás az emberi szem számára is látható, emiatt látható fénynek nevezik.
Az összes elektromágneses sugárzás elrendezhető frekvencia szerint, ekkor kapjuk az elektromágneses spektrumot.
(teljes spektum: http://hu.wikipedia.org/wiki/Elektromágneses_hullám).
Az elektromágneses lökéshullám kétféleképpen is értelmezhető:
• Szélessávú, intenzív, rövid ideig tartó elektromágneses energia robbanás,
• Robbanás – különösen nukleáris – következtében, avagy egy erősen ingadozó erejű mágneses mező hatására létrejött elektromágneses lökés.

2) Az elektromágneses fegyverek meghatározása, és felosztásuk

 
E fegyverek, melyek a részecskefegyverek mellett az IEF-k másik fő csoportját alkotják, a 21. század legmodernebb fegyvereinek minősülnek. Pusztító – illetve egyéb kívánt – hatásukat az elektromágneses sugárzás, energia különböző fajtáinak (lásd: spektum) felhasználásával érik el, pld. Elektronikai berendezések semlegesítése, személyek átmeneti megbénítása, vagy megölése.
E fegyvereket két fő csoportba sorolhatjuk:
• azon fegyverek, melyek a környezetre fejtenek ki valamely hatást; valamint
• azok, melyek az élő szervezetekre (különösen a központi idegrendszerre) hatnak.
Előbbiek esetén hatalmas mennyiségű energiát lehet sugározni a célterületre, a kívánt hatás elérése érdekében. A besugárzott energia megváltoztatja a terület ionszféráját, így zavarható a kommunikáció, esetlegesen az időjárás, de röntgen sugárzás segítségével fold alatti objektumokat is fel lehet deríteni. Besugárzott energia mennyiségétől függően akár komoly pusztítást is okozható, főleg az elektronikai eszközökben.
Utóbbi esetén e fegyverek, amennyiben megfelelő frekvenciájú, alacsony energiájú sugarat alkalmazunk, képesek behatolni az ember központi idegrendszerébe, s átmenetileg, esetleg véglegesen módosíthatják a célszemélyek viselkedését – legalábbis a nyilvánosságra került publikációk állítják, hogy valami hasonlót sikerült véghez vinni laboratóriumi kísérletek során.
Az elektromágneses sugarakat tehát akár úgy is lehet hangolni, hogy azok kárt tegyenek élő szövetekben.
Az elektromágnese fegyverek előbbi tulajdonságát szeretné több állam hadserege és rendőrsége is felhasználni, a hatékonyságuk növelése céljából. Egyesek szerint elektromágneses fegyvereket már többször is vetettek be katonai akciók során, pl. az Öböl háború során.

3) Fejlődésük

 
1945 után, a szövetségesek rájöttek, hogy a japánok a világháború alatt kifejlesztettek egy halálsugarat, mely működése során egy nagyon rövid rádióhullámot sűrített egy nagy energiájú sugárba, s azt lőtte ki. A fegyvert állatokon is tesztelték, de a japánok tagadták, hogy embereken is tesztelték volna.
1953-ban John C. Lilly végzett különféle kutatásokat, melyek során elektródák segítségével stimulálta az emberi agy öröm és fájdalom központját. Kutatásaival az idegsebészet fejlődését kívánta elősegíteni, éppen ezért tagadta meg az együttműködést a DIA-val és a CIA-val. Elmondása szerint kutatásai nem hoztak eredményt, s nem akart a fenti szerveknek ilyen kutatási eredményeket átadni…
1958-ban, valamint 1962-ben az amerikaiak végrehajtották az első nagy magasságban robbantott elektromágneses bomba tesztjét.
1965-ben a McFarlane Corporation kifejleszt egy halálsugár fegyvert, melyet egy modulált elektro puskakánt
1965-ben az amerikaiak belekezdtek a Pandora-tervbe, melynek során csimpánzokon vizsgálták a mikrohullámú sugárzás hatásait. A terv vezetőjének elmondása szerint az alacsony sugárzású mikrohullámokkal befolyásolható az emberi viselkedés, s megerősített, hogy e felfedezés alapot adhat új típusú fegyverek kifejlesztésére is.
1970-ben Zbigniew Brzezinski, amerikai Nemzetbiztonsági Hivatal vezetője, könyvében lehetségesnek tartotta időjárás manipulálására alkalmas fegyverek megalkotását, melyek a nagy államok stratégiáinak fontos részét képezhetnék.
Állította, hogy a Föld egy adott területére mért, jól időzített, mesterségesen létrehozott elektromos csapás olyan rezgésmintát hoz létre, mely az adott területen az energia szint komoly növekedéshez vezet. Innen már csak egy lépés, hogy valaki létrehozzon egy olyan eszközt, mely képes a célterület élő személyek agyteljesítményét hátrányosan befolyásolja egy ilyen csapással.
1972-ben az amerikaiak sikeresen tesztelték az első mikrohullámú fegyvert.
Ugyanebben az évben a hadsereg készített egy tanulmányt, melyben leszögezte, hogy a mikrohullámú fegyverek alkalmasak a gyalogos személyek megbénítására, s nagy valószínűséggel a gépjárműben tartózkodó személyeket is képes megbénítani.
A kutatások a kommunikáció terén is folytatódtak, s ’73-ban már hallható üzenetet tudtak továbbítani mikrohullám segítségével.
1975 – 1977 között az emberi viselkedést befolyásoló radar vitájával kapcsolatban több tanulmány is készült a mikrohullámú fegyverek élettani hatásairól.
1981 – 1982 között az amerikai haditengerészet is komoly érdeklődést kezdett mutatni az elektromágneses fegyverek, mint nem-ölő fegyverek lehetséges felhasználási módjai iránt, különösen járőrözés és egyéb bevetések során kívánták alkalmazni e fegyvereket.
1982-ben Angliában a rendvédelmi szerveket elektromágneses fegyverekkel is felszerelték:
E fegyverek 10-30 Hz intervallumban mozgó erősségű villanást bocsátottak ki, mely szédülést, hányingert, és gyengeséget okozott. A fegyver hatékonyságát úgy növelték, hogy egy 4.0 – 7.5 Hz terjedelemben mozgó hangot is kibocsátott az eszköz.
1983-ban fény derült arra, hogy a KGB tudat manipulálás programja komoly erővel folyik, s az oroszok komoly pénzeket ölnek e tervbe.
1988-ben a Pentagon-t a bíróság akkor, különböző helyeken végzett, futó összes EMP teszt leállítására kötelezte, mivel környezeti aktivisták egy csoportja pert nyert a Pentagonnal szemben.
1992 Decemberében az amerikai hadsereg belekezdett egy egy éves kutatásba az akusztikus sugár technológia terén.
1993-ban a szovjet kormány felajánlotta az amerikai kormánynak, hogy átadja számára a 70-es években folytatott tudat manipulálás terén szerzett ismereteket, amennyiben kész együttműködni vele egy közös pszicho-technológiát kutató központ keretében.
Jelenleg is komolykutatások, tesztelések folynak az elektromágneses fegyverek terén. Több nagy állam is komoly érdeklődést mutat e fegyverek lehetséges felhasználása iránt, s nemcsak a hadviselésben, hanem pld. a telekommunikáció terén is.

4) Jellemzőik és előnyeik

 
Korábbi témával foglalkozó cikkemben kitértem az IEF-k jellemzőire, az ott elmondottak itt is érvényesek.
A hadsereg az elektromágneses fegyverek használata során – jellemzőikben rejlő előnyök mellett – további előnyökhöz juthat, ezek:
Gyorsan fejtik ki hatásukat;
• Időjárási viszonyoktól függetlenül alkalmazhatóak;
• Sokféle célpont támadható segítségükkel, a célpontok jellemzőinek alapos ismerete nélkül;
• Nehezen támadható – pl. föld alatti – célpontok ellen is hatékonyak;
• Minimális járulékos károkozás, különösen fontos ezen előny, ha politikailag érzékeny területen vetik be e fegyvereket;.
• Kevesebb idő szükséges a célpont beméréséhez, s nyomon követéséhez;
• Céltól függően széleskörű alkalmazhatóság – pusztítás, bénítás, elektronikai berendezések semlegesítése, zavarása.
Az eddig említett előnyeik miatt több ország is – különösen: Kína, Oroszország, USA – komoly pénzeket fordít a fejlesztésekre és tesztelésekre. Európai államokat elsősorban a nagy energiájú mikrohullámú technológia hosszú távú, s különösen az elleni védekezés, foglalkoztatja.
Valamint veszélyeik…
Sajnos e fegyverekben rejlő lehetőségeket a hadseregek mellett a terroristák, bűnszervezetek is felismerték.
Célpontjaik sokfélék lehetnek a katonai céloktól, egészen a pénzügyi, egészségügyi létesítményig, bármilyen civil épület is.
Ráadásul a civil létesítmények többsége nem védett ilyen jelegű támadásokkal szemben, ellenben bizonyos hadi létesítmények igen.
Tovább fokozza a veszélyt a “fegyver” mérete, hisz egy elektromágneses sugárzást létrehozó generátor egy aktatáskában is elfér, így könnyen becsempészhető a támadás helyére.
Az első ilyen támadást 1995-ben regisztrálták, akkor a csecsen lázadók vetették be egy orosz gyár biztonsági rendszerének semlegesítésére
Senki sem tudja pontosan, hogy az alvilág mennyire használja e fegyvereket, de feltételezik, hogy a bűnözök is használták már. Számukra különösen vonzó eszköz, mivel e fegyverek nem hagynak nyomokat, így szinte tökéletes bűncselekményeket valósíthatnak meg.

5) Elektronikus háború

 
Az elektronikus háború (EH) egyrészt, az elektromágneses spektum felhasználásával az ellenséges erők elektromágneses támadásának elhárítása, másrészt eközben saját, illetve szövetséges erők – e technológia segítségével – megerősítése.
Mivel a kommunikáció, nyomkövetés, irányítás, felismerés során egyre inkább optikai, illetve infra technológiát alkalmaznak, azért az elektronikus háborút, avagy elektronikus háborús taktikát gyakran elektromágneses háborúnak nevezik, elektronikus helyett.
Hagyományosan az Elektronikus háborús technikák és felszerelések két csoportba oszthatóak, aszerint, hogy általuk használt energiát környezetükbe sugározzák-e, vagy sem, aktív és passzív csoportba.
A passzív csoport olyan harci felderítő, illetve túlélő felszereléseket tartalmaz, melyek segítségével észlelehető az ellenséges radarok és kommunikációs eszközök által kibocsátott elektromágneses sugárzás. A harci felderítő eszközök elsősorban sugárzást kibocsátó eszközök felderítésére, s azok helyzetének meghatározására alkalmasak. Egyéb passzív eszközök az ellenséges radarokhoz visszasugárzott energiát manipulálják.
Az aktív csoportba tartozó felszerelési eszközök energiát sugároznak környezetükbe, akár zaj formájában – pld. az ellenség elektromágneses szenzorainak zavarása céljából.
Az EH 3 fő összetevőből áll: elektronikus támogatás, elektronikus ellencsapás, és végül az elektronikus védekezés.

5.1) Elektronikus támogatás

Az elektronikus támogatás (ET) az elektromágnese spektum által nyújtott lehetőségek felhasználása az ellenség felkutatására, helyzetének meghatározására, illetve egyéb célpontok, veszélyforrások felkutatására.
E technológia segítségével szerzett információk segítségével könnyedén csapás mérhető az ellenséges erőkre, pld. tüzérséggel, avagy szövetséges erők mozgósítása révén. Mivel az ET passzív eszköz, így az ellenség tudta nélkül használható (ne feledjük, nem bocsát ki sugárzást, így nem mérhető be).

5.2) Elektronikus ellencsapás

Elektronikus ellencsapás (EECS), az elektronikus háború részeként, magába foglal minden olyan elektronikai eszköz, berendezés használatát, melyekkel radarokat, szonárok, egyéb azonosító berendezéseket téveszthetőek meg.
Az EECS során, az ellenség semlegesítése céljából, a támadó erők felhasználják, mind az aktív, mind a passzív csoportba tartozó eszközöket egyaránt.
Aktív EECS, pld.: zavarás, megtévesztés, EMP használata, stb.
Passzív EECS, pld.: lopakodás, megtévesztés, ballonok, különféle csapdák használata, radarok zavarása, stb.
Az EECS akciókat, tekintettel az aktív eszközök használtára, az ellenség könnyen kiszúrhatja. Mondani sem kell, hogy a legtöbb EECS megoldás szigorúan titkos.
Az EECS során az ellenség azonosító rendszereit úgy zavarják, hogy azok több célpontot mutatsanak, avagy simán ne jelezzék a valódi célpontokat. E megoldás segítségével hatékonyan védhetőek a légierő gépei, haditengerészet hajói is. Például az F-22-re vagy az F35-re szerelt radarok kiválóan működhetnek ilyen zavaró berendezésként, melyekkel érzékelhetik és zavarhatják az ellenséges radarokat.
A lopakodó technológia használata tovább növeli a zavaró technika hatékonyság.
Az EECS bármely hadi eszközön alkalmazható, legyen akár szárazföldi, vízi, légi. Egyértelmű, hogy légi járművekre célszerű e zavaró eszközöket telepíteni, mivel nagyobb területet “látnak”be. Az EECS eszközökkel felszerelt légi járművet sem a radarok sem a levegő-föld, levegő-levegő rakéták sem tudják nyomon követni.

5.3) Elektronikus védekezés

Minden elektronikus védekezés (EV) terén alkalmazott megoldás arra irányul, hogy az ellenség Elektronikus támadásának hatását elhárítsák, avagy csökkentsék azt. Az EV segítségével a szövetséges erők is megvédhetőek saját – elbaltázott – EECS-jükkel szemben.
Aktív EV-be olyan tevékenységek sorolhatóak, mint: rádió felszerelések technikai módosítása.
Passzív EV, pld.: operátorok képzése, valamint harci stratégiák módosítása.
Néhány speciális EV technika:

EECS érzékelése

A Szenzorok megfelelő beállítások mellett érzékelik az egyes megtévesztési próbálkozásokat, s semlegesítik is azokat (pld.: a célba vett repülő a hőkövető rakéta megtévesztésére, hőt kibocsátó eszközt lő ki.

Lineáris Frekvenciamoduláció

E megoldás segítségével fel lehet erősíteni a radarok által észlelt jeleket. A kimenő radar jel ciripelésre emlékeztet, mely folyamatosan változtatja a frekvenciáját, mint ahogy a tücsök is ciripelés közben.. Mikor a kibocsátott impulzus visszaverődik egy tárgyról, s visszatér a radarhoz, a jelet egy ideig várakoztatják, s ennek hatására a jel erősebbnek tűnik, igaz rövidebb ideig is érzékelhető.

Frekvencia változtatás

Frekvencia változtatás segítségével a közvetített energia frekvenciája gyorsan változtatható, s ezáltal a jel csak egy rövid időintervallumban fogható.

Polarizáció

A polarizáció segítségével kiszűrhetőek a nem kívánatos jelek, mint például zavarás. Amennyiben a zavaró jelnek és a fogadó állomásnak különböző polaritása van, akkor a zavaró jel legyengül, s csökken a hatékonysága. A radarok hatékonyság több, különböző polaritású, antenna használatával tovább növelhető, melyek által észlelt jeleket össze lehet hasonlítani. E megoldás segítségével, az összes nem megfelelő polaritású zavaró jel kiszűrhető.

6) Az elektromágneses fegyverek élettani hatásairól

 
Az elektromágneses fegyverek által kibocsátott impulzus nagyon rövid hat, kb. 100 picoszekondum. E rövid idő alatt is képes elpusztítani bármilyen elektromosságot vezető anyagot, többek közt a neuronokat és idegeket is.
Az elektromágneses fegyverek élőlényekre kifejtett hatását már a 1940-es években elkezdték tanulmányozni. Ezen időszakban különösen a japánok fordítottak jelentősebb összegek egy halálsugár fejlesztésére. Az amerikaiak által megtalált kutatási eredmények igazolták, hogy építhető olyan fegyver, mely elektromágneses sugarat bocsát ki, s elpusztít minden embert a fegyvertől számított 5-10 mérföld távolságon belül.
Későbbiekben több állatkísérlet is igazolta az elektromágneses sugárzás halálos erejét. A kísérletek során, legalább 60 cm hullámhossz mellett, a sugárzás elpusztította egy egér tüdőszöveteit. 2 méternél rövidebb hullámhossz esetén már az agysejteket is elpusztította a sugárzás.
Az elektromos stimulációnak nem halálos hatásai is ismertek. A 2. világháború után Amerikában több titkos kutatást is zajlott, melyek során a kísérletben részvett emberek agyának különböző részeit stimulálták, s így képesek voltak befolyásolni viselkedésüket. Egy másik Kanadában folytatott, de a CIA által támogatott kísérletsorozat (“Operation Knockout”) során a tudósok rájöttek, hogy az elektrosokk kezelés amnéziát idéz elő, így a személy memóriája törölhető, s újraprogramozható. Miután e kísérletek nyilvánosságot kaptak, az erős szakmai és társadalmi felháborodás hatására leállították azokat.
Az alacsony frekvenciájú elektromágneses hullámok (akusztikus hullámok) is hatással lehetnek az emberi szervezetre. E hullámok hatására az ember szervei elkezdhetnek vibrálni, melynek hatására a következő tünetek léphetnek föl: hányinger, hasmenés, fülfájás, valamint mentális zavar. Minél közelebb áll valami a hullámok forrásához, annál intenzívebbek lesznek a tünetek.
A rövidebb hullámhosszú sugárzásnak változatos hatásai lehetnek. Vegyük például a mikrohullámú sugárzást. Amennyiben embert ér e sugárzás, az emberi szervezetben az atomok elkezdenek vibrálni, mely hőt termel, s felhevülést eredményez.
200 yard (~182 m) távolságban is a testhő a normálisnak számító 98.6° F-ről (37 fok Celsius) 107° F-re (41 fok Celsius) hevül. A távolságot csökkentve a testhő még tovább növelhető, s akár halálos is lehet.
A mikrohullámú elektromágneses sugárzás a fenti hatás mellett a periférikus idegek stimulálása révén meg is bénítja a célpontot. A stimuláció hatására az agy egyszerre több információt kap az idegektől, mint amit fel tud dolgozni, így túlterheli az agyat, aminek eszméletvesztés lehet az eredménye.
A fenti hatások tekintetében kulcskérdés a célpont és a sugárzás forrásának távolsága, a távolság növekedésével csökken a hatás, illetve el is enyészik.

7) Egyes elektromágneses fegyverek

 
Elektromágneses fegyverek a lézer, mikrohullámú, rádió frekvencián alapuló fegyverek. Témával foglalkozó korábbi cikkemben már tömören bemutattam mind három fegyvertípust, így itt csak hivatkozom a korábban írtakra.

8) Konklúziók

 
Amennyiben a fejlesztések továbbra is hasonló ütemben folytatódnak azon államok, melyek komoly erőforrásokat fordítottak az IEF-kre, jelentős katonai erővel fognak rendelkezni, szemben azokkal, akik elmulasztották rendszeresíteni e fegyvereket.
Jelenleg egy erősen egyoldalú fegyverkezési verseny folyik, melynek során az USA – a ‘Star Wars’ program teljesítésével – jelentősen megerősödik, s ezáltal 2020 tájékára teljes dominanciával fog rendelkezni az űrháború terén.
Az elektromágneses fegyverek pedig – lézerek, ABM-k mellett – kulcsfontosságú szerepet játszanak e fegyverkezési versenyben.

Felhasznált irodalom:

 
http://hu.wikipedia.org/wiki/Elektromágnesesség
– http://hu.wikipedia.org/wiki/Elektromágneses_hullám
– http://encyclopedia.thefreedictionary.com/Electromagnetic+pulse
– http://www.globalsecurity.org/org/news/2003/030130-ebomb01.htm
– http://www.raven1.net/jwalltil.htm
– http://xiandos.info/Electromagnetic_weapons
– http://en.wikipedia.org/wiki/Electronic_warfare
– http://www.espionageinfo.com/Ec-Ep/Electromagnetic-Weapons-Biochemical-Effects.html (Brian Hoyle: Electromagnetic Weapons, Biochemical Effects)





Irányított energiájú fegyverek 3.



Részecskesugár fegyverek

 
IEF3_3
Témával foglalkozó korábbi két cikkemben bemutattam az irányított energiájú fegyvereket általánosságban, illetve egyik fő típusukat az elektromágneses fegyvereket. Jelen cikkemben a másik fő típussal a részecskesugár, avagy simán részecske fegyverekkel foglalkozom.
Akárcsak korábban, ezúttal is általános áttekintést kívánok adni, s nem részletes ismertetést, mivel a cikk méretbeli keretei nem teszik lehetővé a részletes kifejtést.

1) Technológiai háttér: részecskesugár, részecskegyorsítás, gyorsítópálya, egyéb

 
A részecskesugár felgyorsított részecskékből, gyakran atomokból (melyek fénysebesség közeli sebességgel mozognak) álló sugár, hullám, melyet mágnesekkel irányítanak és elektrosztatikus lencsék segítségével fókuszálnak, bár létrehozható önfókuszáló sugár is.
Szubatomi részecskék, mint például: elektronok, pozitronok, és protonok, nagy sebességre gyorsíthatóak és magas energia szintre juttathatóak, azáltal, hogy gépek segítségével energiát adnak az alapállapotú részecskéknek, a folyamat eredményeként hatalmas energiájú részecskesugarat kapunk. A részecskéket lövedékekként használva, egyéb részecskéket bombázhatunk.
Az alacsony és közepes energiájú sugarak használata elég elterjedt, gondoljunk csak a katódsugárcsöves tévékre.
A magas energiájú sugarakat részecskegyorsítókban hozzák létre.
A részecskegyorsító elektrosztatikus (nem mágnes) mező segítségével gyorsítja föl a töltött részecskéket. Amint a töltött részecske elhalad az egyik mező forrása mellett a mező részecskéével azonos töltésre vált, így taszítani kezdi azt, míg a következő forrás, a részecskéhez képest, ellentétes töltésre vált, így vonza magához, így gyorsítják föl a részecskét. Természetben is találunk példát e folyamatra, a villám jelenség, ahol az elektronok a negatív töltésű felhőktől a pozitív töltésű felhők, avagy a föld felé haladnak.
Nagyobb energiát el lehet érni egyenfeszültséggel és váltakozó feszültséggel is. Az egyenfeszültséggel működő gyorsítókat egyenáramú gyorsítóknak nevezzük, mivel folyamatos részecskenyalábot képes előállítani, míg a váltófeszültséggel működőket pulzált gyorsítóknak nevezzük, mert csak részecskecsomagok gyorsíthatók vele, nem érhető el folytonos nyaláb.
A pulzált gyorsítókat a részecskepálya alapján tovább csoportosítjuk
– Lineáris gyorsítókra, (A lineáris gyorsítóknak nevezzük azokat a pulzált gyorsítókat, amelyben a töltött részecskéket egy egyenes mentén gyorsítják), a legtöbb mai gyorsító ilyen, egy igen hosszú cső, amiben a fentiek szerint gyorsítják a részecskéket
– Körkörös gyorsítókra. (A körkörös gyorsítókban a részecske egy kör, vagy változó sugarú körívek mentén mozog, amíg el nem éri a szükséges energiát. A körkörös gyorsítók előnye a lineárisokkal szemben, hogy egy-egy része többször gyorsít a részecskén, ahányszor csak áthalad ott).
IEF3_1
A részecskesugarak tekintetében különbség tehető töltött és semleges állapotú részecskesugár között.
– Az előbbiről akkor beszélünk, ha térben elkülönült, megközelítőleg azonos sebességű és irányú elektromosan töltött részecskék találhatóak. A részecskék sokkal nagyobb energiával rendelkeznek, mint a természetben, e tulajdonságukat teszi hasznossá azokat különböző szerkezete számára. Nagy hátránya e sugárnak, hogy a Föld mágneses tere el tudja téríteni, másrészt hatalmas elektromos töltöttsége miatt szétszóródik, s kontrollálhatatlan lesz.
Utóbbi esetében a semleges állapotú részecskékből álló sugarat úgy állítják elő, hogy hidrogént, vagy izotópját a deutériumot igen erős elektromos hatásnak teszik ki. Az elektromos töltés hatására negatív töltésű ionok jönnek létre, melyek egy vákuumcsatornán vezetik keresztül, melyben elektromosság segítségével felgyorsítják azokat. Mire a csatorna végére érnek az elektronokat leválasztják a negatív ionokról, s így létrejön a semleges sugár.
IEF3_2

2) Részecskefegyverek meghatározása, működésük, felépítésük

 
A sci-fi filmekben e fegyverek pillanatok alatt felgyorsítják a részecskéket fénysebességre, 180 fokban képesek tüzelni, mégpedig szédítő gyorsasággal. Valóságban ez nem így működik, kétségtelen, hogy lehetséges ilyen fegyverek építése, de azok semmiképp sem olyanok, melyeket, pl. az Enterprise-n láttunk.

2.1) Fogalmuk és típusaik

A részecskesugár fegyverek (RSF) egy ultra magas energiájú atomokból vagy elektronokból álló sugarat “lőnek ki”, mely sugár elpusztítja, vagy megrongálja a célpontot, azáltal, hogy szétrombolja annak atomi, vagy molekuláris szerkezetét.
Mint már a cikk elején is jeleztem e fegyverek is az IEF -k családjába tartoznak. Egyes RSF-k megvalósíthatóak, míg mások csupán a fantáziánk eredményei.
Kétféle RSF létezik:
– exoatmoszférikus (légüres térre tervezett fegyverek) és
– endoatmoszférikus (olyan körülmények közé tervezett, ahol légköri viszonyokkal is számolni kell)
Az exoatmoszférikusak esetében csakis a semleges töltésű sugárfegyverek jöhetnek szóba (hidrogén semleges töltésű, így a Föld mágneses mezeje nem tudja eltéríteni), mivel csak így lehet megelőzik, hogy a sugár letérjen a pályájáról. Amennyiben letér a pályáról, amellett, hogy pontatlan lesz, energiát is veszik, így csökken az ereje.
Endoatmoszférikusak esetében mindkét típusú fegyver használható, de a töltött részecskékből álló sugár a jobb választás. A töltött részecskékből álló sugár esetén az irányíthatóság tekintetében kulcskérdés a szétszóródás.
A töltött részecskék esetében az atmoszféra vezetőként funkcionál, a sugár pedig az áram. A folyamat során egy elektromos mező keletkezik, mely csatornaként működik, s megakadályozza, hogy szétszóródjon a sugár. Amennyiben egy nagy sebességű, rövid impulzus töltött sugarat lövünk keresztül az atmoszférán, mellékhatásként elektromágneses impulzus jön létre, igaz nagyon rövid ideig hat csupán.
Elméletben már kiszámolták, milyen paraméterek szükségesek, ahhoz, hogy a töltött részecskékből álló sugár stabilan haladjon a légkörben, de e paraméterek titkosak, így jelenleg egy gyorsítóval sem állítható elő ilyen stabil sugár.
Ami a semleges töltésű sugár légköri használhatóságát illeti:
A levegő részecskéi gyorsan letépnék a semleges részecskék körül lévő elektronokat, így töltötté tennék azokat, melyek egymással kapcsolatba lépnének, s ez komoly szétszóródást eredményezhetne, de a sugár részecskéi is letépnének elektronokat a levegő molekulákról. A folyamat összességében semlegesség tenné a sugarat, s így csökkenne a sugáron belüli részecskék közötti taszítás (mely tehát azért jön létre, mert elektront veszítenek, s töltötté válnak).

2.2) Működésük

A RSF által kilőtt – közel fénysebességgel mozgó, hatalmas kinetikus energiával rendelkező, gyorsított részecskékből álló – sugár, amint eltalálja a célpontot; a részecskék átadják mozgási energiájukat a célpont atomjainak (valahogy úgy, mint, ahogy az egyik biliárdgolyó átadja a másiknak), amik gerjedni kezdenek, s a célpont rövid idő alatt felhevül, s felrobban.
Az elektron részecskesugár fegyver hasonlóan működik, csak az a célpont atomjaiban az elektronpályákat bontja szét
Egyszerűbben: képzeljük el mi történik, ha villám csap valami, körülbelül ugyanilyen pusztítóak a RSF-k is.

2.3) Felépítésük

Két fő alkotóelemből állnak e fegyverek: energiaforrás és a gyorsító.
Értelemszerűen az energiaforrás biztosítja a gyorsító számára a sugár létrehozásához szükséges energiát. A fő probléma abban rejlik, hogy a gyorsító iszonyú mértékű energiát használ (több millió, vagy akár milliárd watt) fel rövid idő alatt. Elengedhetetlen egy igen erős generátor, mely a gyorsító mellett még egyéb elektronikai eszközök energiaigényeit is ki tudja elégíteni. Jelen technológiai szint mellett építhető ilyen energiaforrás, csak nem mindegy mekkora, s milyen súlyú…
A RSF két alkotóelem közül a második jelenti az igazi fejfájást a mérnököknek. Egy gyorsító 3 elemből épül föl: részecskeforrás, befecskendező eszköz, és végül a gyorsító eszköz maga. Valamennyi jelenlegi gyorsító ugyanúgy működik: a befecskendező a gyorsítóba juttatja a részecskéket, ahol addig adagolnak energiát a részecskékhez, illetve addig gyorsítják azokat, míg használható sugarat nem kapnak. A gyorsítóban elhelyezett egyes modulok jelenleg korlátozott mennyiségű energiát tudnak átadni a részecskéknek tehát kellő számú modulra van szükség, de ez elég hosszú pályát eredményez (1 Gev energiájú sugár létrehozásához legalább 100 méter hosszú lineáris gyorsító szükségeltetik).

3) Fejlődésük

 
Nikola Tesla már 1937-ben bemutatta a töltött részecskesugár technológiai leírását, s egy olyan szuperfegyvert kívánt alkotni, mely véget vetett volna minden háborúnak, de végül sosem sikerült véghezvinnie tervét.
1958-ban, két évvel az első tudományos lézer bemutatása előtt, Amerikában egy a RSF fegyverekkel foglalkozó titkos kutatás vette kezdetét, melyet az Advanced Research Projects Agency (jelenleg: Defense Advanced Research Projects Agency, DARPA) pénzelt. A Seesaw kódnévvel jelzett kutatás során azt vizsgálták, hogy ezen IEF-ket milyen hatékonysággal lehetne rakétavédelmi fegyverekként alkalmazni.
1950 és ’80 között mind az oroszok, mind az amerikaiak több laboratóriumi kísérletsorozat keretében vizsgálták a részecskesugár lehetséges katonai felhasználhatóságát.
Összehasonlítva a többi IEF-vel, az RSF-k mindig is háttérbeszorultak, egészen a Star Wars védelmi program elindításáig. Jelenleg például az amerikai hadsereg a lézer és részecskesugár fegyverekre fordít különös hangsúlyt, igaz az utóbbiak esetében elég alacsony költségvetés mellett. A részecskesugarakat jelenleg az élet több területén is alkalmazzák, a katonai felhasználás terén eddig nem sikerült áttörést elérni, de jelenleg is folynak a kutatások.
Egyes katonai kutatók már most úgy beszélnek a részecskesugár fegyverekről, mint a lézerek utódairól.

4) Előnyeik és hátrányaik

 
A RSF-knek – a már említett IEF általános előnyök mellett – speciális előnyei és hátrányai vannak.

4.1) Előnyeik

Jelentős átütőerő: A szubatomi részecskéknek, melyek a sugarat alkotják, hatalmas átütőerővel rendelkeznek, ennek köszönhetően, a célpontot nemcsak a felszínén roncsolja, mint a lézer, hanem közvetlenül a cél atomi szerkezetét támadják.
A részecske fegyverek képesek felrobbantani acélt, azáltal, hogy annak belsejébe hatalmas energiát sugároznak (catastrophic kill mechanism). Az átütőerő miatt nincs is igazi védelmi megoldás a sugárral szemben.
Rombolóhatás: A sugár energiáját közvetlenül a cél részecskéinek, atomjainak adja át, így közvetlenül annak atomstruktúráját támadja, így sokkal gyorsabban fejti ki pusztítóhatását.
Rövid lövési szünetek: Amennyiben a sugár eltalálja a célt, az azonnal megsemmisül, nincs szükség több lövésre, így a fegyvert nem kell a célponton tartani, hanem lövés után azonnal ismét lehet tüzelni más célpontra.
Gyors célzás: Mint korábban írtam, egy mágneses mező is keletkezik a sugár lövésekor, ami megakadályozza, hogy szétszóródjon a sugár. E mező segítségével, fizikai behatás nélkül, korlátok között, lövés után gyorsan új célpont felé állítható a fegyver.
Érzéketlenség a természeti jelenségekre: Amíg a lézert olyan jelenségek, mint köd, eső eltéríthetik, a semleges RSF tekintetében ez nem fordulhat elő.
Járulékos pusztító hatás: Az elődleges pusztító / ölő hatás mellett egy járulékos pusztító / ölő hatás is lehetséges. Atmoszférikus viszonyok között a sugárral szimmetrikusan egy sugárzás tölcsér jön létre miközben a sugár részecskéi a levegőt alkotó atomokkal találkoznak. E sugárzó tölcsérben megtalálható az összes típusú ionizáló sugárzás (x-ray, neutron, alfa és béta stb.). Mindemelett még elektromágneses impulzus is létrejöhet. A mellékhatás előnye, hogy ha még a sugár el is enyészik valamilyen ok folytán, a sugárzás tovább halad, s pusztít.
E két mellékhatás (sugárzás, EMP) az űrbe tervezett (exoatmoszférikus) sugárfegyverek esetében elmaradnak, igaz helyettük mások keletkeznek. Például: alacsonyabb erejű sugár esetében, a sugár tönkreteheti a műholdak érzékenyebb alkatrészeit…

4.2) Hátrányaik

Komoly erőforrás igény: Az RSF-k jelentős mennyiségű (több millió volt) elektromos áramot, illetve elektromos potenciát, erős mágneses teret (sugár irányításához) és hosszú gyorsítópályát igényelnek.
Energia problémák: A jelentős energiaigény mellett másik probléma az energia raktározása, hiszen ha elő is állítjuk a szükséges energiát, azt nem használjuk fel azonnal, így valahol és valahogyan raktározni kell, ekkora energiánál ez is probléma lehet.
Nehéz irányíthatóság: Miután a RSF-k sugarai is, a lézerekhez hasonlóan, közel fénysebességgel közlekednek, nehéz kontrollálni és irányítani azokat
Korlátozott sugár átmérő: További probléma, a sugár átmérője, mivel ha növeljük, akkor ahogy halad a cél felé, folyamatosan csökken a részecske sűrűség, így csökken az ereje is.
További problémák: Jó néhány megoldatlan problémával kell még a mérnököknek szembenézniük, különösen a tüzelési rendszer tekintetében. Ráadásul e tekintetben nem használhatják fel a lézerfegyverek terén szerzett tapasztalatokat, mint például a célzás, nyomon követés esetén.

5) Konklúziók

 
A RSF tekintetében még sok problémát kell leküzdeni, mire működőképes fegyver lesz a kezünkben (energia, méretbeli problémák, célzás, szétszóródás kiküszöbölése, stb.), de úgy tűnik, hogy főleg az amerikaiak lelkesedése tőretlen, igaz nem fordítanak akkor összeget fejlesztésekre, mint egyéb IEF, különösen a lézerek tekintetében, de folyamatosan napirenden vannak.
Az amerikai RSF fejlesztések logikusan következnek az eddig nagy energiájú lézer fejlesztésekből, s több mindent ebből vesznek át, s alkalmazzák a RSF-k terén. A RSF-ben rejlő potenciák, különösen a nagy sebességű, több célpont elleni hatékonyság, szelektív pusztító erő miatt, e fegyverek tökéletesen beleillenek az űrvédelmi elképzelésekbe. Az elvárások magasak, s sokan úgy tekintenek e fegyverekre, mint a lézerek utódjaira, jó lehet több tudós arra hívja föl a figyelmet, hogy nem is építhetőek ilyen fegyverek, vagy ha mégis nem lesznek hatékonyak.

Felhasznált irodalom:

 
http://en.wikipedia.org/wiki/Particle_beam
– http://hu.wikipedia.org/wiki/Részecskegyorsító
– http://en.wikipedia.org/wiki/Charged_particle_beam
– http://www.fas.org/spp/starwars/program/npb.htm
– http://en.wikipedia.org/wiki/Particle_beam_weapon
– http://www.physicspost.com/articles.php?articleId=82&page=1
– http://everything2.com/index.pl?node_id=682151
– http://www.airpower.maxwell.af.mil/airchronicles/aureview/1984/jul-aug/roberds.html




Nincsenek megjegyzések:

Megjegyzés küldése